A high-fidelity ultrasonic pulse-echo scheme for detecting delaminations in composite laminates

1999 ◽  
Vol 30 (5) ◽  
pp. 433-441 ◽  
Author(s):  
S.-C. Wooh ◽  
C. Wei
2020 ◽  
pp. 17-27
Author(s):  
А.А. Шелухин

In this article, the analysis of the acoustic path during the ultrasonic pulse echo testing of the rail head in production is carried out. The influence of the parameters of the applied piezoelectric transducers on the distribution of sensitivity for the sounding scheme used in the existing installations is estimated and the real sensitivity of detecting defects of the «non-metallic inclusion» type is estimated.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2949
Author(s):  
Marzieh Rabiei ◽  
Arvydas Palevicius ◽  
Amir Dashti ◽  
Sohrab Nasiri ◽  
Ahmad Monshi ◽  
...  

Taking into account X-ray diffraction, one of the well-known methods for calculating the stress-strain of crystals is Williamson-Hall (W–H). The W-H method has three models, namely (1) Uniform deformation model (UDM); (2) Uniform stress deformation model (USDM); and (3) Uniform deformation energy density model (UDEDM). The USDM and UDEDM models are directly related to the modulus of elasticity (E). Young’s modulus is a key parameter in engineering design and materials development. Young’s modulus is considered in USDM and UDEDM models, but in all previous studies, researchers used the average values of Young’s modulus or they calculated Young’s modulus only for a sharp peak of an XRD pattern or they extracted Young’s modulus from the literature. Therefore, these values are not representative of all peaks derived from X-ray diffraction; as a result, these values are not estimated with high accuracy. Nevertheless, in the current study, the W-H method is used considering the all diffracted planes of the unit cell and super cells (2 × 2 × 2) of Hydroxyapatite (HA), and a new method with the high accuracy of the W-H method in the USDM model is presented to calculate stress (σ) and strain (ε). The accounting for the planar density of atoms is the novelty of this work. Furthermore, the ultrasonic pulse-echo test is performed for the validation of the novelty assumptions.


1993 ◽  
Vol 21 (1) ◽  
pp. 3-16 ◽  
Author(s):  
P. Spalthoff ◽  
W. Wunnike ◽  
C. Nauer-Gerhard ◽  
H. J. Bunge ◽  
E. Schneider

The components of the elastic stiffness tensor of hot rolled low-carbon steel were determined using an ultrasonic pulse-echo-method. They were also calculated on the basis of X-ray texture measurements using the Hill approximation. The maximum deviation between experimental and calculated values is 3.5%. An influence of the slightly anisotropic grain structure on the elastic anisotropy could not be seen.


2006 ◽  
Vol 74 (18) ◽  
Author(s):  
O. Svitelskiy ◽  
A. Suslov ◽  
D. L. Schlagel ◽  
T. A. Lograsso ◽  
K. A. Gschneidner ◽  
...  

Wave Motion ◽  
2011 ◽  
Vol 48 (3) ◽  
pp. 275-289 ◽  
Author(s):  
Jing Ye ◽  
Hak-Joon Kim ◽  
Sung-Jin Song ◽  
Sung-Sik Kang ◽  
Kyungcho Kim ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 379
Author(s):  
Sang-Gyu Lee ◽  
Daekyun Oh ◽  
Jong Hun Woo

Ship structures made of glass fiber-reinforced polymer (GFRP) composite laminates are considerably thicker than aircraft and automobile structures and more likely to contain voids. The production characteristics of such composite laminates were investigated in this study by ultrasonic nondestructive evaluation (NDE). The laminate samples were produced from E-glass chopped strand mat (CSM) and woven roving (WR) fabrics with different glass fiber contents of 30–70%. Approximately 300 pulse-echo ultrasonic A-scans were performed on each sample. The laminate samples produced from only CSM tended to contain more voids compared with those produced from a combination of CSM and WR, resulting in the relative density of the former being lower than the design value, particularly for high glass fiber contents of ≥50%. The velocity of the ultrasonic waves through the CSM-only laminates was also lower for higher glass fiber contents, whereas it steadily increased for combined CSM–WR laminates. Burn-off tests of the laminates further revealed that the fabric configuration of the combined CSM–WR laminates was of higher quality, prevented the formation of voids, and improved inter-layer bonding. These findings indicate that combined CSM–WR laminates should be used to achieve more accurate ultrasonic NDE of GFRP composite structures.


1985 ◽  
pp. 479-479
Author(s):  
D. K. Nassiri ◽  
J. C. Bamber ◽  
M. Tristam ◽  
C. R. Hill

Sign in / Sign up

Export Citation Format

Share Document