SOS induction of selected naturally occurring substances in Escherichia coli (SOS chromotest)

Author(s):  
Sebastian Kevekordes ◽  
Volker Mersch-Sundermann ◽  
Christian M Burghaus ◽  
Jan Spielberger ◽  
Heinz H Schmeiser ◽  
...  
Author(s):  
A. Maseykina ◽  
I. Stepanenko ◽  
S. Yamashkin ◽  
E. Slastnikov

The study of new antimicrobial compounds includes determining the mechanism of their effect on the microbial cell. As a rule, the effect of most modern synthetic antimicrobials is associated either with the suppression of DNA synthesis, or with the suppression of bacterial protein synthesis at the level of translation or transcription.There are sensitive and simple methods for screening and monitoring the potential genotoxic activity of a wide range of natural and synthetic compounds. To date, the Ames test has been widely used, based on the sensitivity of Salmonella strains to carcinogenic chemicals, although some compounds that cause Ames negative reactions could actually be carcinogenic to animals.Similarly, the SOS chromotest is an SOS transcriptional analysis that can evaluate DNA damage caused by chemical and physical mutagens. It measures the expression of a reporter gene (β-galactosidase). The β-galactosidase enzyme processes ortho-nitrophenyl galactopyranoside to form a yellow compound detected at 420 nm. Then, the induction of β-galactosidase normalizes the activity of alkaline phosphatase, an enzyme expressed constitutively by Escherichia coli. SOS chromotest is also widely used for genotoxicological studies. The answer is quick (several hours) and does not require the survival of the test strain. Dose response curves for various chemicals include a linear region. The slope of this area is taken as a measure of SOS induction.Therefore, an SOS chromotest was selected for the study, which allows one to identify the DNA-mediated effect of the studied compounds.The aim of the work was to evaluate the SOS-inducing activity of antimicrobial compounds based on substituted 1H-indol-4-, 5-, 6-, 7-ylamines.The strain Escherichia coli PQ 37 with the genotype F-thr leu his-4 pyrD thi galE lacΔU169 srl300 :: Th10 rpoB rpsL uvrA rfa trp :: Mis + sfi A :: Mud (Ar, lac) cts, Due to the presence of sfi A genes :: lac Z, lacZ β-galactosidase gene expression in strain PQ 37 is controlled by the promoter of the sfiA gene, one of the components of the E. coli SOS regulon. The indicator of the SOS-inducing activity of the studied compounds in the SOS chromotest is the activity of β-galactosidase, which evaluates the activity of active microorganisms - alkaline phosphatase, which also allows you to control the toxic effect of the studied compounds on bacterial cells.The results showed that 4,4,4-trifluoro-N-(6-methoxy-1,2,3-trimethyl-1H-indol-5-yl)-3-oxobutanamide (1), 4,4,4-trifluoro-N-(6-methyl-2-phenyl-1H-indol-5-yl)-3-oxobutanamide (2) and N-(1,5-dimethyl-2-phenyl-1H-indol-6-yl)-4,4,4-trifluoro-3-oxobutanamide (3) does not possess SOS-inducing activity in the studied concentrations. 4-Hydroxy-8-phenyl-4-(trifluoromethyl)-1,3,4,7-tetrahydro-2H-pyrrolo [2,3-h] -quinolin-2-one (4), 9-hydroxy-5-methyl-2-phenyl-9-(trifluoromethyl)-1,6,8,9-tetrahydro-7Н-pyrrolo-[2,3-f]quinolin-7-one (5), 6-hydroxy-2,3-dimethyl-6-(trifluoromethyl)-1,6,7,9-tetrahydro-8H-pyrrolo[3,2-h]quinolin-8-one (6) and 1,2,3,9-tetramethyl-6-(trifluoromethyl)-1,9-dihydro-8H-pyrrolo [3,2-h]quinolin-8-one (7) showed dose-dependent SOS-inducing activity in bactericidal concentrations. The obtained research results allowed us to identify compounds 4, 5, 6, 7, the mechanism of action of which includes exposure to DNA of a microbial cell.


1993 ◽  
Vol 40 (4) ◽  
pp. 549-554 ◽  
Author(s):  
H Czeczot ◽  
J Kusztelak

Genotoxic activities of flavonoids (quercetin, rhamnetin, isorhamnetin, apigenin, luteolin) were investigated using two short-term bacterial assays. In the "repair test" in Salmonella typhimurium (strains TA1538 uvrB- and TA1978 uvrB+) the flavonoids studied did not introduce any damage into the DNA recognized by UvrABC nuclease (correndonuclease II). The results of the SOS-Chromotest in Escherichia coli K-12 strains PQ37 (tag+, alk+) and PQ243 (tagA, alkA) indicated that flavonoids only weakly induced the SOS system. The addition of a liver activation system (S9 mix) did not increase the mutagenic effect of the flavonoids tested. Two compounds: rhamnetin, isorhamnetin and their putative metabolites formed in the presence of the S9 mix did not alkylate DNA at N-3 of adenine.


1998 ◽  
Vol 88 (12) ◽  
pp. 1248-1254 ◽  
Author(s):  
William E. Snyder ◽  
David W. Tonkyn ◽  
Daniel A. Kluepfel

The southern corn rootworm, Diabrotica undecimpunctata subsp. howardi, a common and mobile insect pest, was shown to transmit the rhizobacte-rium Pseudomonas chlororaphis strain L11 between corn plants. Strain L11 has been genetically modified to contain the lacZY genes from Escherichia coli. It can reach high densities on roots and invade the roots and move into the foliage. D. undecimpunctata subsp. howardi became infested with L11 as larvae while feeding on roots of seed-inoculated corn and retained the bacteria through pupation, molting to the adult stage, and emergence from the soil. Bacterial densities on or in the insects increased 100-fold after they fed again as adults on L11-infested foliage. Adults retained the bacteria for at least 2 weeks after last exposure and could transmit L11 to new plants. The likelihood of transmission decreased with time since last exposure to L11, but increased with time spent on the new plants. This research demonstrates that rhizobacteria can escape the rhizosphere by moving in or onto foliage, where they can then be acquired and transmitted by insects. This transmission route may be common among naturally occurring rhizobacteria and facilitate the dispersal of both beneficial and harmful soilborne microorganisms.


1999 ◽  
Vol 43 (9) ◽  
pp. 2176-2182 ◽  
Author(s):  
Eliana Rodríguez ◽  
Carina Gaggero ◽  
Magela Laviña

ABSTRACT Microcin H47 is a bactericidal antibiotic produced by a naturally occurring Escherichia coli strain isolated in Uruguay. The microcin genetic system is located in the chromosome and extends over a 10-kb DNA segment containing the genes required for microcin synthesis, secretion, and immunity. The smallest microcin synthesis gene,mchB, was sequenced and shown to encode a highly hydrophobic peptide. An mchB-phoA gene fusion, which directed the synthesis of a hybrid bifunctional protein with both PhoA and microcin H47-like activities, was isolated. The results presented herein lead us to propose that microcin H47 is indeed a ribosomally synthesized peptide antibiotic and that its peptide precursor already has antibiotic activity of the same specificity as that of mature microcin.


1986 ◽  
Vol 167 (3) ◽  
pp. 1055-1057 ◽  
Author(s):  
J Barbé ◽  
A Villaverde ◽  
J Cairo ◽  
R Guerrero

2019 ◽  
Vol 10 ◽  
Author(s):  
Gang Liu ◽  
Karolina Bogaj ◽  
Valeria Bortolaia ◽  
John Elmerdahl Olsen ◽  
Line Elnif Thomsen

1981 ◽  
Vol 44 (4) ◽  
pp. 271-274
Author(s):  
ADELLE W. STEWART

The fate of naturally occurring and added bacterial pathogens was determined in “soul foods” purchased at local supermarkets and farm families while the foods were stored under conditions simulating those used for retail distribution, home storage, and preparation before use. Viable count determinations for 10 samples at the end of a 5-day period at 10 C showed considerable decreases in comparison to the inoculum size, indicating that growth was not promoted. Escherichia coli survived in all the food samples but the populations decreased by 1 to 9 log cycles/g of food. Salmonella typhimurium survived in 59% of the food samples. Except for farm family collard greens and sausage (encased), Staphylococcus aureus remained viable in all of the foods tested an d was the only survivor in cracklings (cooked) obtained from both sources. Clostridium perfringens was detected in farm family sweet peas and 23% of the pig offal samples.


Sign in / Sign up

Export Citation Format

Share Document