Field studies on the atmospheric chemistry of volatile organic compounds emitted in a eucalyptus forest (FIELDVOC'94)

2001 ◽  
Vol 3 (3) ◽  
pp. 209-210
Author(s):  
G.K Moortgat ◽  
B Bonsang ◽  
M Kanakidou
2021 ◽  
Author(s):  
Christopher Cantrell ◽  
Vincent Michoud ◽  
Paola Formenti ◽  
Jean-Francois Doussin ◽  
Stephanie Alhajj Moussa ◽  
...  

<p>It is well known that the high population density of urban regions leads to significant degradation of the quality of the air because of the emissions of pollutants that are by-products of energy production, transportation, and industry. The composition and chemistry of urban air has been studied for many decades and these studies have led to detailed understanding of the factors controlling, for example, the formation of ozone, peroxyacetyl nitrate and other secondary species. In the last 20 to 30 years, significant progress has been made in reducing emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NO<sub>x</sub>) in urban atmospheres. Substantial reductions in the abundance of secondary compounds, though, have been more elusive.</p><p>Research has continued to reveal more and more details of the complex processes involved in the atmospheric degradation of wide varieties of volatile organic compounds (VOCs) of anthropogenic and biospheric (BVOCs) origins. BVOCs include isoprene, monoterpenes and sesquiterpenes, and oxygenated VOCs (OVOCs, such as small alcohols). Emissions of BVOCs depend on several factors such as plant or tree species, temperature, and photosynthetically active radiation. They consist almost exclusively of unsaturated compounds with chemistry somewhat different from those of typical urban organic compound emissions. Oxidation of VOCs can lead to molecules of low volatility that are prone to uptake into the aerosol phase.</p><p>Recent studies conducted in megacities such as Paris, Mexico City, Los Angeles and those in China have led to significant advances in our understanding of the chemical evolution of urban plumes. However, important scientific questions remain on how mixing of anthropogenic and biogenic air masses modifies the composition of urban plumes and hence their impacts. Indeed, the proximity of cites to areas of strong biogenic emissions is not unusual. Many major cities at mid-latitudes are surrounded by forested areas.</p><p>ACROSS (Atmospheric ChemistRy Of the Suburban foreSt) is an integrative, innovative, multi-scale project awarded under the “Make Our Planet Great Again” (MOPGA) framework that seeks to definitively improve understanding of the impacts of mixing urban and biogenic air masses on the oxidation of atmospheric VOCs. The ACROSS working hypothesis is that this leads to changes in the production of oxygenated VOCs whose properties (e.g. vapor pressures) alter their importance in incorporation into SOA and their roles in production of ozone and other secondary species. Changes are also expected in the efficiency of radical recycling affecting the atmospheric oxidative capacity. Particularly important is NO<sub>x</sub> transport to suburban biogenic environments and the resulting modification of key chemical processes.</p><p>A key highlight of ACROSS is an intensive, multi-platform measurement campaign in the summer of 2022. It will use instruments staged on an airborne platform, a tower in the Rambouillet Forest near Paris, and other ground sites. The data collected from this campaign will be analyzed and studied to extract information about tropospheric oxidation chemistry generally, but also changes observed in the situation of mixed urban and biogenic air masses.</p><p>This presentation will summarize plans for the ACROSS campaign.</p>


2019 ◽  
Vol 95 (8) ◽  
Author(s):  
Wietse de Boer ◽  
Xiaogang Li ◽  
Annelein Meisner ◽  
Paolina Garbeva

ABSTRACT There is increasing evidence that microbial volatile organic compounds (mVOCs) play an important role in interactions between microbes in soils. In this minireview, we zoom in on the possible role of mVOCs in the suppression of plant-pathogenic soil fungi. In particular, we have screened the literature to see what the actual evidence is that mVOCs in soil atmospheres can contribute to pathogen suppression. Furthermore, we discuss biotic and abiotic factors that influence the production of suppressive mVOCs in soils. Since microbes producing mVOCs in soils are part of microbial communities, community ecological aspects such as diversity and assembly play an important role in the composition of produced mVOC blends. These aspects have not received much attention so far. In addition, the fluctuating abiotic conditions in soils, such as changing moisture contents, influence mVOC production and activity. The biotic and abiotic complexity of the soil environment hampers the extrapolation of the production and suppressing activity of mVOCs by microbial isolates on artificial growth media. Yet, several pathogen suppressive mVOCs produced by pure cultures do also occur in soil atmospheres. Therefore, an integration of lab and field studies on the production of mVOCs is needed to understand and predict the composition and dynamics of mVOCs in soil atmospheres. This knowledge, together with the knowledge of the chemistry and physical behaviour of mVOCs in soils, forms the basis for the development of sustainable management strategies to enhance the natural control of soil-borne pathogens with mVOCs. Possibilities for the mVOC-based control of soil-borne pathogens are discussed.


2009 ◽  
Vol 6 (1) ◽  
pp. 70 ◽  
Author(s):  
Aurélie Colomb ◽  
Valérie Gros ◽  
Séverine Alvain ◽  
Roland Sarda-Esteve ◽  
Bernard Bonsang ◽  
...  

Environmental context. Oceans represent 70% of the blue planet, and surprisingly, ocean emission in term of volatile organic compounds is poorly understood. The potential climate impacts on a global scale of various trace organic gases have been established, and the terrestrial inputs are well studied, but little is known about which of these can be emitted from oceanic sources. In the present study, atmospheric samples were taken over the Southern Indian Ocean, while crossing some oceanic fronts and different phytoplankton species. Such a study should aid in understanding oceanic emission, especially from phytoplankton, and will help modellers to determine concentrations of organic traces in the remote marine troposphere. Abstract. Considering its size and potential importance, the ocean is poorly characterised in terms of volatile organic compounds (VOC) that play important roles in global atmospheric chemistry. In order to better understand their potential sources and sinks over the Southern Indian Austral Ocean, shipborne measurements of selected species were made during the MANCHOT campaign during December 2004, on board the research vessel Marion Dufresne. Along the transect La Réunion to Kerguelen Island, air measurements of selected VOC (including dimethylsulfide (DMS) isoprene, carbonyls and organohalogens), carbon monoxide and ozone were performed, crossing subtropical, temperate and sub-Antarctic waters as well as pronounced subtropical and sub-Antarctic oceanic fronts. The remote marine boundary layer was characterised at latitudes 45–50°S. Oceanic fronts were associated with enhanced chlorophyll and biological activity in the seawater and elevated DMS and organohalogens in the atmosphere. These were compared with a satellite-derived phytoplankton distribution (PHYSAT). Diurnal variation for isoprene, terpenes, acetone and acetaldehyde was observed, analogously to recent results observed in mesocosm experiments.


2019 ◽  
Vol 19 (4) ◽  
pp. 2209-2232 ◽  
Author(s):  
Guo Li ◽  
Yafang Cheng ◽  
Uwe Kuhn ◽  
Rongjuan Xu ◽  
Yudong Yang ◽  
...  

Abstract. Volatile organic compounds (VOCs) play a key role in atmospheric chemistry. Emission and deposition on soil have been suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube system to investigate the long-term variability of bidirectional air–soil exchange of 13 VOCs under ambient air conditions of an urban background site in Beijing. Sterilized soil was investigated to address physicochemical processes and heterogeneous/multiphase reactions independently from biological activity. Most VOCs revealed net deposition with average uptake coefficients (γ) in the range of 10−7–10−6 (referring to the geometric soil surface area), corresponding to deposition velocities (Vd) of 0.0013–0.01 cm s−1 and soil surface resistances (Rc) of 98–745 s cm−1, respectively. Formic acid, however, was emitted at a long-term average rate of ∼6×10-3 nmol m−2 s−1, suggesting that it was formed and released upon heterogeneous oxidation of other VOCs. The soil–atmosphere exchange of one individual VOC species can be affected by both its surface degradation/depletion caused by surface reactions and by competitive uptake or heterogeneous formation/accommodation of other VOC species. Overall, the results show that physicochemical processing and heterogeneous oxidation on soil and soil-derived dust can act as a sink or as a source of atmospheric VOCs, depending on molecular properties and environmental conditions.


2016 ◽  
Author(s):  
N. L. Ng ◽  
S. S. Brown ◽  
A. T. Archibald ◽  
E. Atlas ◽  
R. C. Cohen ◽  
...  

Abstract. Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than three decades, during which time a large body of research has emerged from laboratory, field and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first section summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.


2010 ◽  
Vol 10 (17) ◽  
pp. 8391-8412 ◽  
Author(s):  
B. Langford ◽  
P. K. Misztal ◽  
E. Nemitz ◽  
B. Davison ◽  
C. Helfter ◽  
...  

Abstract. As part of the OP3 field study of rainforest atmospheric chemistry, above-canopy fluxes of isoprene, monoterpenes and oxygenated volatile organic compounds were made by virtual disjunct eddy covariance from a South-East Asian tropical rainforest in Malaysia. Approximately 500 hours of flux data were collected over 48 days in April–May and June–July 2008. Isoprene was the dominant non-methane hydrocarbon emitted from the forest, accounting for 80% (as carbon) of the measured emission of reactive carbon fluxes. Total monoterpene emissions accounted for 18% of the measured reactive carbon flux. There was no evidence for nocturnal monoterpene emissions and during the day their flux rate was dependent on both light and temperature. The oxygenated compounds, including methanol, acetone and acetaldehyde, contributed less than 2% of the total measured reactive carbon flux. The sum of the VOC fluxes measured represents a 0.4% loss of daytime assimilated carbon by the canopy, but atmospheric chemistry box modelling suggests that most (90%) of this reactive carbon is returned back to the canopy by wet and dry deposition following chemical transformation. The emission rates of isoprene and monoterpenes, normalised to 30 °C and 1000 μmol m−2 s−1 PAR, were 1.6 mg m−2 h−1 and 0.46mg m−2 h−1 respectively, which was 4 and 1.8 times lower respectively than the default value for tropical forests in the widely-used MEGAN model of biogenic VOC emissions. This highlights the need for more direct canopy-scale flux measurements of VOCs from the world's tropical forests.


2002 ◽  
Vol 2 (6) ◽  
pp. 1847-1903 ◽  
Author(s):  
S. M. Saunders ◽  
M. E. Jenkin ◽  
R. G. Derwent ◽  
M. J. Pilling

Abstract. Kinetic and mechanistic data relevant to the tropospheric degradation of volatile organic compounds (VOC), and the production of secondary pollutants, have previously been used to define a protocol which underpinned the construction of a near-explicit Master Chemical Mechanism. In this paper, an update to the previous protocol is presented, which has been used to define degradation schemes for 107 non-aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3). The treatment of 18 aromatic VOC is described in a companion paper. The protocol is divided into a series of subsections describing initiation reactions, the reactions of the radical intermediates and the further degradation of first and subsequent generation products. Emphasis is placed on updating the previous information, and outlining the methodology which is specifically applicable to VOC not considered previously (e.g. a- and b-pinene). The present protocol aims to take into consideration work available in the open literature up to the beginning of 2001, and some other studies known by the authors which were under review at the time. Application of MCM v3 in appropriate box models indicates that the representation of isoprene degradation provides a good description of the speciated distribution of oxygenated organic products observed in reported field studies where isoprene was the dominant emitted hydrocarbon, and that the a-pinene degradation chemistry provides a good description of the time dependence of key gas phase species in a-pinene/NOX photo-oxidation experiments carried out in the European Photoreactor (EUPHORE). Photochemical Ozone Creation Potentials (POCP) have been calculated for the 106 non-aromatic non-methane VOC in MCM v3 for idealised conditions appropriate to north-west Europe, using a photochemical trajectory model. The POCP values provide a measure of the relative ozone forming abilities of the VOC. Where applicable, the values are compared with those calculated with previous versions of the MCM.


2013 ◽  
Vol 13 (11) ◽  
pp. 30187-30232 ◽  
Author(s):  
E. Bourtsoukidis ◽  
J. Williams ◽  
J. Kesselmeier ◽  
S. Jacobi ◽  
B. Bonn

Abstract. Biogenic volatile organic compounds (BVOC) are substantial contributors to atmospheric chemistry and physics and demonstrate the close relationship between biosphere and atmosphere. Their emission rates are highly sensitive to meteorological and environmental changes with concomitant impacts on atmospheric chemistry. We have investigated seasonal isoprenoid and oxygenated VOC (oxVOC) fluxes from a Norway spruce (Picea abies) tree in Central Germany and explored the emission responses under various atmospheric conditions. Emission rates were quantified by using dynamic branch enclosure and Proton Transfer Reaction–Mass Spectrometry (PTR-MS) techniques. Additionally, ambient mixing ratios were derived through application of a new box model treatment on the dynamic chamber measurements. These are compared in terms of abundance and origin with the corresponding emissions. Isoprenoids govern the BVOC emissions from Norway spruce, with monoterpenes and sesquiterpenes accounting for 50.8 ± 7.2% and 19.8 ± 8.1% respectively of the total emissions. Normalizing the VOC emission rates, we have observed a trend of reduction of carbon containing emissions from April to November, with an enhancement of oxVOC. Highest emission rates were observed in June for all measured species, with the exception of sesquiterpenes that were emitted most strongly in April. We exploit the wide range of conditions experienced at the site to filter the dataset with a combination of temperature, ozone and absolute humidity values in order to derive the emission potential and temperature dependency development for the major chemical species investigated. A profound reduction of monoterpene emission potential (E30) and temperature dependency (β) was found under low temperature regimes, combined with low ozone levels (E30MT, LTLO3=56 ± 9.1 ng g(dw)−1 h−1, βMT,LTLO3=0.03±0.01 K−1) while a combination of both stresses was found to alter their emissions responses with respect to temperature substantially (E30MT,HTHO3=1420.1 ± 191.4 ng g(dw)−1 h−1, βMT,HTHO3=0.15 ± 0.02 K−1). Moreover, we have explored compound relationships under different atmospheric condition sets, addressing possible co-occurrence of emissions under specific conditions. Finally, we evaluate the temperature dependent algorithm that seems to describe the temperature dependent emissions. Highest emission deviations were observed for monoterpenes and these emission fluctuations were attributed to a fraction which is triggered by an additional light dependency.


2016 ◽  
Vol 9 (3) ◽  
pp. 1247-1259 ◽  
Author(s):  
T. Hohaus ◽  
U. Kuhn ◽  
S. Andres ◽  
M. Kaminski ◽  
F. Rohrer ◽  
...  

Abstract. A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m−2 s−1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.


Sign in / Sign up

Export Citation Format

Share Document