Parametric and Neural Network Models for Fault Detection and Isolation of Industrial Process Sub-Modules

2000 ◽  
Vol 33 (11) ◽  
pp. 355-358
Author(s):  
Andrzej Janczak
2018 ◽  
Vol 8 (8) ◽  
pp. 1290 ◽  
Author(s):  
Beata Mrugalska

Increasing expectations of industrial system reliability require development of more effective and robust fault diagnosis methods. The paper presents a framework for quality improvement on the neural model applied for fault detection purposes. In particular, the proposed approach starts with an adaptation of the modified quasi-outer-bounding algorithm towards non-linear neural network models. Subsequently, its convergence is proven using quadratic boundedness paradigm. The obtained algorithm is then equipped with the sequential D-optimum experimental design mechanism allowing gradual reduction of the neural model uncertainty. Finally, an emerging robust fault detection framework on the basis of the neural network uncertainty description as the adaptive thresholds is proposed.


2021 ◽  
Vol 11 (3) ◽  
pp. 1280 ◽  
Author(s):  
Cheng Xiao ◽  
Zuojun Liu ◽  
Tieling Zhang ◽  
Xu Zhang

The converter is an important component in wind turbine power drive-train systems, and usually, it has a higher failure rate. Therefore, detecting the potential faults for prediction of its failure has become indispensable for condition-based maintenance and operation of wind turbines. This paper presents an approach to wind turbine converter fault detection using convolutional neural network models which are developed by using wind turbine Supervisory Control and Data Acquisition (SCADA) system data. The approach starts with the selection of fault indicator variables, and then the fault indicator variables data are extracted from a wind turbine SCADA system. Using the data, radar charts are generated, and the convolutional neural network models are applied to feature extraction from the radar charts and characteristic analysis of the feature for fault detection. Based on the analysis of the Octave Convolution (OctConv) network structure, an improved AOctConv (Attention Octave Convolution) structure is proposed in this paper, and it is applied to the ResNet50 backbone network (named as AOC–ResNet50). It is found that the algorithm based on AOC–ResNet50 overcomes the issues of information asymmetry caused by the asymmetry of the sampling method and the damage to the original features in the high and low frequency domains by the OctConv structure. Finally, the AOC–ResNet50 network is employed for fault detection of the wind turbine converter using 10 min SCADA system data. It is verified that the fault detection accuracy using the AOC–ResNet50 network is up to 98.0%, which is higher than the fault detection accuracy using the ResNet50 and Oct–ResNet50 networks. Therefore, the effectiveness of the AOC–ResNet50 network model in wind turbine converter fault detection is identified. The novelty of this paper lies in a novel AOC–ResNet50 network proposed and its effectiveness in wind turbine fault detection. This was verified through a comparative study on wind turbine power converter fault detection with other competitive convolutional neural network models for deep learning.


2000 ◽  
Author(s):  
Tor Fretheim ◽  
Rahmat Shoureshi ◽  
Tyrone Vincent ◽  
Duane Torgerson ◽  
John Work

Abstract Predictive maintenance is rapidly becoming a familiar concept in industrial fault detection. The ability to detect early warning signals in systems in the form of small changes in dynamic behavior is essential to anticipate failures. In general, accurate system models are an essential part of residual based fault detection. However, in complex nonlinear systems, the development of accurate models can be very difficult, thus usually other approaches are often selected. As an alternative to the nonlinear analytical models, neural networks have shown significant potential in accurately representing nonlinear systems. In this paper we show how a system identified by a neural network, and a nonlinear observer can be used to detect changes in system dynamics. The neural network structure and identification have a significant impact on the observer performance. Different methods for observer design, and appropriate neural network structures for fault detection are discussed. The experimental section shows the observer implemented on a thermo fluid system. Several faults are introduced, and the observer prediction is compared to actual data.


2020 ◽  
Vol 5 ◽  
pp. 140-147 ◽  
Author(s):  
T.N. Aleksandrova ◽  
◽  
E.K. Ushakov ◽  
A.V. Orlova ◽  
◽  
...  

The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


Sign in / Sign up

Export Citation Format

Share Document