scholarly journals Towards Enhanced Performance of Neural-Network-Based Fault Detection Using an Sequential D-Optimum Experimental Design

2018 ◽  
Vol 8 (8) ◽  
pp. 1290 ◽  
Author(s):  
Beata Mrugalska

Increasing expectations of industrial system reliability require development of more effective and robust fault diagnosis methods. The paper presents a framework for quality improvement on the neural model applied for fault detection purposes. In particular, the proposed approach starts with an adaptation of the modified quasi-outer-bounding algorithm towards non-linear neural network models. Subsequently, its convergence is proven using quadratic boundedness paradigm. The obtained algorithm is then equipped with the sequential D-optimum experimental design mechanism allowing gradual reduction of the neural model uncertainty. Finally, an emerging robust fault detection framework on the basis of the neural network uncertainty description as the adaptive thresholds is proposed.

2000 ◽  
Author(s):  
Tor Fretheim ◽  
Rahmat Shoureshi ◽  
Tyrone Vincent ◽  
Duane Torgerson ◽  
John Work

Abstract Predictive maintenance is rapidly becoming a familiar concept in industrial fault detection. The ability to detect early warning signals in systems in the form of small changes in dynamic behavior is essential to anticipate failures. In general, accurate system models are an essential part of residual based fault detection. However, in complex nonlinear systems, the development of accurate models can be very difficult, thus usually other approaches are often selected. As an alternative to the nonlinear analytical models, neural networks have shown significant potential in accurately representing nonlinear systems. In this paper we show how a system identified by a neural network, and a nonlinear observer can be used to detect changes in system dynamics. The neural network structure and identification have a significant impact on the observer performance. Different methods for observer design, and appropriate neural network structures for fault detection are discussed. The experimental section shows the observer implemented on a thermo fluid system. Several faults are introduced, and the observer prediction is compared to actual data.


2020 ◽  
Vol 19 (3) ◽  
pp. 13-25
Author(s):  
Paweł Kaczmarczyk

The presented research focuses on the construction of a model to effectively forecast demand for connection services – it is thus relevant to the Prediction System (PS) of telecom operators. The article contains results of comparative studies regarding the effectiveness of neural network models and regressive-neural (integrated) models, in terms of their short-term forecasting abilities for multi-sectional demand of telecom services. The feedforward neural network was used as the neural network model. A regressive-neural model was constructed by fusing the dichotomous linear regression of multi-sectional demand and the feedforward neural network that was used to model the residuals of the regression model (i.e. the residual variability). The response variable was the hourly counted seconds of outgoing calls within the framework of the selected operator network. The calls were analysed within: type of 24 hours (e.g. weekday/weekend), connection categories, and subscriber groups. For both compared models 35 explanatory variables were specified and used in the estimation process. The results show that the regressive-neural model is characterised by higher approximation and predictive capabilities than the non-integrated neural model.


The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


2021 ◽  
Vol 12 (6) ◽  
pp. 1-21
Author(s):  
Jayant Gupta ◽  
Carl Molnar ◽  
Yiqun Xie ◽  
Joe Knight ◽  
Shashi Shekhar

Spatial variability is a prominent feature of various geographic phenomena such as climatic zones, USDA plant hardiness zones, and terrestrial habitat types (e.g., forest, grasslands, wetlands, and deserts). However, current deep learning methods follow a spatial-one-size-fits-all (OSFA) approach to train single deep neural network models that do not account for spatial variability. Quantification of spatial variability can be challenging due to the influence of many geophysical factors. In preliminary work, we proposed a spatial variability aware neural network (SVANN-I, formerly called SVANN ) approach where weights are a function of location but the neural network architecture is location independent. In this work, we explore a more flexible SVANN-E approach where neural network architecture varies across geographic locations. In addition, we provide a taxonomy of SVANN types and a physics inspired interpretation model. Experiments with aerial imagery based wetland mapping show that SVANN-I outperforms OSFA and SVANN-E performs the best of all.


2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.


Author(s):  
Soha Abd Mohamed El-Moamen ◽  
Marghany Hassan Mohamed ◽  
Mohammed F. Farghally

The need for tracking and evaluation of patients in real-time has contributed to an increase in knowing people’s actions to enhance care facilities. Deep learning is good at both a rapid pace in collecting frameworks of big data healthcare and good predictions for detection the lung cancer early. In this paper, we proposed a constructive deep neural network with Apache Spark to classify images and levels of lung cancer. We developed a binary classification model using threshold technique classifying nodules to benign or malignant. At the proposed framework, the neural network models training, defined using the Keras API, is performed using BigDL in a distributed Spark clusters. The proposed algorithm has metrics AUC-0.9810, a misclassifying rate from which it has been shown that our suggested classifiers perform better than other classifiers.


2021 ◽  
Vol 1 (1) ◽  
pp. 19-29
Author(s):  
Zhe Chu ◽  
Mengkai Hu ◽  
Xiangyu Chen

Recently, deep learning has been successfully applied to robotic grasp detection. Based on convolutional neural networks (CNNs), there have been lots of end-to-end detection approaches. But end-to-end approaches have strict requirements for the dataset used for training the neural network models and it’s hard to achieve in practical use. Therefore, we proposed a two-stage approach using particle swarm optimizer (PSO) candidate estimator and CNN to detect the most likely grasp. Our approach achieved an accuracy of 92.8% on the Cornell Grasp Dataset, which leaped into the front ranks of the existing approaches and is able to run at real-time speeds. After a small change of the approach, we can predict multiple grasps per object in the meantime so that an object can be grasped in a variety of ways.


2000 ◽  
Author(s):  
Arturo Pacheco-Vega ◽  
Mihir Sen ◽  
Rodney L. McClain

Abstract In the current study we consider the problem of accuracy in heat rate estimations from artificial neural network models of heat exchangers used for refrigeration applications. The network configuration is of the feedforward type with a sigmoid activation function and a backpropagation algorithm. Limited experimental measurements from a manufacturer are used to show the capability of the neural network technique in modeling the heat transfer in these systems. Results from this exercise show that a well-trained network correlates the data with errors of the same order as the uncertainty of the measurements. It is also shown that the number and distribution of the training data are linked to the performance of the network when estimating the heat rates under different operating conditions, and that networks trained from few tests may give large errors. A methodology based on the cross-validation technique is presented to find regions where not enough data are available to construct a reliable neural network. The results from three tests show that the proposed methodology gives an upper bound of the estimated error in the heat rates.


2008 ◽  
pp. 2476-2493 ◽  
Author(s):  
David Encke

Researchers have known for some time that nonlinearity exists in the financial markets and that neural networks can be used to forecast market returns. Unfortunately, many of these studies fail to consider alternative forecasting techniques, or the relevance of the input variables. The following research utilizes an information-gain technique from machine learning to evaluate the predictive relationships of numerous financial and economic input variables. Neural network models for level estimation and classification are then examined for their ability to provide an effective forecast of future values. A cross-validation technique is also employed to improve the generalization ability of the models. The results show that the classification models generate higher accuracy in forecasting ability than the buy-and-hold strategy, as well as those guided by the level-estimation-based forecasts of the neural network and benchmark linear regression models.


Sign in / Sign up

Export Citation Format

Share Document