Continuous-Time Variable Structure Self-Tuning Control with Reference Model

1997 ◽  
Vol 30 (27) ◽  
pp. 99-103
Author(s):  
Darko Mitić ◽  
Čedomir Milosavljević
2021 ◽  
Vol 11 (6) ◽  
pp. 2784
Author(s):  
Shahnaz TayebiHaghighi ◽  
Insoo Koo

In this paper, the combination of an indirect self-tuning observer, smart signal modeling, and machine learning-based classification is proposed for rolling element bearing (REB) anomaly identification. The proposed scheme has three main stages. In the first stage, the original signal is resampled, and the root mean square (RMS) signal is extracted from it. In the second stage, the normal resampled RMS signal is approximated using the AutoRegressive with eXternal Uncertainty (ARXU) technique. Moreover, the nonlinearity of the bearing signal is solved using the combination of the ARXU and the machine learning-based regression, which is called AMRXU. After signal modeling by AMRXU, the RMS resampled signal is estimated using a combination of the proportional multi-integral (PMI) technique, the variable structure (VS) Lyapunov technique, and a self-tuning network-fuzzy system (SNFS). Finally, in the third stage, the difference between the original signal and the estimated one is calculated to generate the residual signal. A machine learning-based classification technique is utilized to classify the residual signal. The Case Western Reserve University (CWRU) dataset is used to evaluate anomaly identification performance of the proposed scheme. Regarding the experimental results, the average accuracy for REB crack identification is 98.65%, 97.7%, 97.35%, and 97.67%, respectively, when the motor torque loads are 0-hp, 1-hp, 2-hp, and 3-hp.


2013 ◽  
Vol 278-280 ◽  
pp. 1473-1476
Author(s):  
Alexander Lebedev

New methods of the synthesis of multi-dimensional robust and adaptive control systems for the centralized control of the spatial motion of autonomous underwater vehicles (AUV) is developed in this paper, such as variable structure system (VSS) and self-adjustment system with reference model. The conditions of the sliding mode existence and the self-adjustment process stability with the presence of essential dynamic reciprocal effect between all control channels are obtained and strictly proved. The application of synthesized discontinuous control provides the high control quality at any variations of the object parameters within the given ranges.


1995 ◽  
Vol 27 (01) ◽  
pp. 146-160
Author(s):  
Lakhdar Aggoun ◽  
Robert J. Elliott

A continuous-time, non-linear filtering problem is considered in which both signal and observation processes are Markov chains. New finite-dimensional filters and smoothers are obtained for the state of the signal, for the number of jumps from one state to another, for the occupation time in any state of the signal, and for joint occupation times of the two processes. These estimates are then used in the expectation maximization algorithm to improve the parameters in the model. Consequently, our filters and model are adaptive, or self-tuning.


2017 ◽  
Vol 872 ◽  
pp. 337-345
Author(s):  
Yan Dong Chen

Based on the dynamic model of 1/4 vehicle suspension, an active control system is designed using the fractional order exponential reaching law of model following variable structure control strategy. An active suspension with linear quadratic optimal control is used as the reference model. The sliding mode switching surface parameters is designed by pole placement method to ensure the stability of the system. At the same time, combined with the index reaching law proposed by Professor Gao Wei Bing and the definition and properties of fractional index, constructs a similar fractional order exponent reaching law to improve the dynamic quality of sliding mode motion. And in MATLAB, system modeling and controller design are implemented. By setting up experiments, the different suspensions are compared. The results show that compared with the passive suspension, the performance of the vehicle can be improved better, and the performance of the tracking reference model has good tracking performance. Moreover, compared with the integral exponential reaching law, the chattering can be more effectively weakened. Finally, before and after the change of vehicle parameters in the simulation, the results show that the system has good robustness.


Sign in / Sign up

Export Citation Format

Share Document