scholarly journals Optimal multilevel control of hot rolling steel mills

1977 ◽  
Vol 10 (14) ◽  
pp. 271-276
Author(s):  
G.M. Aly ◽  
M.M. Aziz ◽  
M.A.R. Ghonaimy
Keyword(s):  
Author(s):  
Hebatalrahman Ahmed, Abdul Hadi Ali Abu Ruwaila

  This research deals with the problem of breakdowns and interruptions and their impact on the industrial system in the iron and steel industry, which considered as one of the industries related to the construction sector and automotive industries. The research is an applied study on the hot rolling mill factory of the Libyan Iron and Steel Company in Misurata. The study introduces analysis for maintenance programs and their economics related to breakdown and breakdown rates in the hot rolling factory in Misurata, which is the main producer of steel reinforcement and steel bars in the Libyan Jamahiriya. Malfunctions and breakdowns are studied through annual statistics reports stop in the previous years of the life of the factory, The effects of mechanical stops on the annual production amount in the factory were estimated and calculated statically, the research also discusses many concepts and strategies for new maintenance operations such as maintenance before malfunctions such as predictive maintenance and periodic maintenance. The research end with a group of conclusions and recommendations for the methods to overcome the problems of stoppages and breakdowns in steel mills, it is establishing a strategy for counting, assessing faults and developing maintenance systems in proportion to the age of the plant.


Author(s):  
S. S. Deshpande ◽  
M. Falk ◽  
N. Plooster

Abstract. Terrestrial lidar scanners are increasingly being used in numerous indoor mapping applications. This paper presents a methodology to model rollers used in hot-rolling steel mills. Hot-rolling steel mills are large facilities where steel is processed to different shapes. In a steel sheet manufacturing process, a steel slab is reheated at one end of the mill and is passed through multiple presses to achieve the desired cross-section. Hundreds of steel rollers are used to transport the steel slab from one end of the mill to the other. Over a period of use, these rollers wore out and need replacement. Manual determination of the damage to the rollers is a time-consuming task. Moreover, manual measurements can be influenced by the operator’s judgment. This paper presents a methodology to model rollers in a hot-rolling steel mill using lidar points. A terrestrial lidar scanner was used to collect lidar points over the roller surfaces. Data from several stations were merged to create a single point cloud. Using a bounding box, lidar points on all the rollers were clipped and used in this paper. The clipped data consisted of the roller as well as outlier points. Depending on the scan angles of scanner stations, partial surfaces of the rollers were scanned. A right-handed coordinate frame was used where the X-axis passed through the centers of all the rollers, Y-axis was parallel to the length of the first roller, and the Z-axis was in the plumb direction. Using a standard diameter of the roller, model roller points were created to extract the rollers. Both the lidar data and the model points were converted to rectangular prism-shaped voxels of dimensions 15.24 mm (0.05 ft) × 15.24 mm in the X and Z directions and extending over the entire width of the roller in the Y-direction. Voxels containing at least 40 lidar points were considered valid. Binary images of both the lidar points and the model points were created in the X-Z axes using the valid voxels. The roller locations in the lidar image were located by performing 2D FFT image matching using the model roller image. The roller points at the shortlisted locations were fitted with a circle equation to determine the mean roller diameters and mean center locations (roller’s rotation axis). The outlier points were filtered in this process for each roller. The elevation at the top of every roller was determined by adding their radii and Z-coordinates of its centers. Incorrectly located and/or modeled rollers were identified by implementing moving-average filters. Positively identified roller points were further analyzed to determine surface erosions and tilts. The above methodology showed that the rollers can be effectively modeled using the lidar points.


Author(s):  
E. N. Shiryaeva ◽  
M. A. Polyakov ◽  
D. V. Terent'ev

Complexity of modern metallurgical plants, presence of great number of horizontal and vertical interactions between their various structural subdivisions makes it necessary to apply a systems analysis to elaborate effective measures for stable development of a plant operation. Among such measures, digitalization of a plant is widespread at present. To implement the digitalization it is necessary to have clear vision about links at all the levels of the technological system of a plant. A terminology quoted, accepted in the existing regulatory documents for defining of conceptions, comprising the technological system. It was shown, that the following four hierarchical levels of technological systems are distinguished: technological systems of operations, technological systems of processes, technological systems of production subdivisions and technological systems of plants. A hierarchical scheme of technological systems of hot-rolled sheet production at an integrated steel plant presented. Existing horizontal and vertical links between the basic plant’s shops shown. Peculiarities of flows of material, energy and information at the operation “rolling” of the technological system “hot rolling of a steel sheet” considered. As a technical system of the technological process of the hot rolling, the hot rolling mill was chosen. A structural diagram of the hot rolling mill was elaborated, the mill being consisted of reheating furnaces, roughing and finishing stand groups, with an intermediate roll-table between them, and down-coilers section. Since the rolling stands are the basic structural elements of the hot rolling mill, structural diagrams of a roughing and a finishing stands were elaborated. Results of the systems analysis of the technological and technical systems, hierarchically linked in the process of steel sheet hot rolling, can be applied for perfection of organization structure of the whole plant, as well as for elaboration mathematical models of a system separate elements functioning, which is a necessary condition for a plant digitalization.


2019 ◽  
Vol 61 (5) ◽  
pp. 397-404
Author(s):  
Vyacheslav Goryany ◽  
Olga Myronova ◽  
Johannes Buch ◽  
Alexander Buch ◽  
Frank Stein

2019 ◽  
Vol 56 (7) ◽  
pp. 449-456
Author(s):  
T. Höfler ◽  
H. Danninger ◽  
B. Linder
Keyword(s):  

Alloy Digest ◽  
1987 ◽  
Vol 36 (9) ◽  

Abstract SAE 1025 is a plain carbon steel for general-purpose construction and engineering. It is used in the hot-worked, cold-worked, normalized or water-quenched-and-tempered condition. It also is carburized and used for case-hardened parts. Its many uses include bolts, forgings, axles, machinery components, cold-extruded parts, pressure vessels, case-hardened parts, chain and sprocket assemblies, spinning tools and permanent-mold castings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-114. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1987 ◽  
Vol 36 (2) ◽  

Abstract SAE 1020 is a low-carbon steel combining good machinability, workability and weldability. It is carburized for use in case-hardened components and it is used for a wide range of applications in the hot-worked, cold-worked, normalized or quenched-and-tempered conditions. Its many uses include bolts, rods, plate applications, machinery components, case-hardened parts, spinning tools and trimming dies. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: CS-113. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1984 ◽  
Vol 33 (2) ◽  

Abstract AISI 1566 is a high-carbon (nominally 0.66% carbon) steel containing 0.85-0.15% manganese. Its hardenability is low and on austenitizing and liquid quenching it develops a hard (martensitic) surface with a soft, ductile core. It can be used in the hot-rolled, annealed, normalized, cold-worked or liquid-quenched-and-tempered condition for a wide range of applications. It has good machinability and good workability. Its many uses include springs, shafts, hand tools, railway parts and agricultural machinery. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-100. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1983 ◽  
Vol 32 (5) ◽  

Abstract AISI 1030 is a plain carbon steel containing nominally 0.30% carbon. It is used in the hot-rolled, normalized, oil-quenched-and-tempered or water-quenched-and-tempered conditions for general-purpose engineering and construction. It provides medium strength and toughness at low cost. Among its many uses are axles, bolts, gears and building sections. All data are on a single heat of fine-grain steel. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-94. Producer or source: Carbon and alloy steel mills.


Sign in / Sign up

Export Citation Format

Share Document