scholarly journals The role of the histidine kinase [) gene in the regulation of cell wall mannan and glucan biosynthesis

2003 ◽  
Vol 3 (3) ◽  
pp. 289-299 ◽  
Author(s):  
M KRUPPA ◽  
T GOINS ◽  
J CUTLER ◽  
D LOWMAN ◽  
D WILLIAMS ◽  
...  
2021 ◽  
Vol 7 (12) ◽  
pp. 1014
Author(s):  
Marina Valente Navarro ◽  
Yasmin Nascimento de Barros ◽  
Wilson Dias Segura ◽  
Alison Felipe Alencar Chaves ◽  
Grasielle Pereira Jannuzzi ◽  
...  

Dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM), an endemic disease in Latin America with a high incidence in Brazil. This pathogen presents as infective mycelium at 25 °C in the soil, reverting to its pathogenic form when inhaled by the mammalian host (37 °C). Among these dimorphic fungal species, dimorphism regulating histidine kinase (Drk1) plays an essential role in the morphological transition. These kinases are present in bacteria and fungi but absent in mammalian cells and are important virulence and cellular survival regulators. Hence, the purpose of this study was to investigate the role of PbDrk1 in the cell wall modulation of P. brasiliensis. We observed that PbDrk1 participates in fungal resistance to different cell wall-disturbing agents by reducing viability after treatment with iDrk1. To verify the role of PbDRK1 in cell wall morphogenesis, qPCR results showed that samples previously exposed to iDrk1 presented higher expression levels of several genes related to cell wall modulation. One of them was FKS1, a β-glucan synthase that showed a 3.6-fold increase. Furthermore, confocal microscopy analysis and flow cytometry showed higher β-glucan exposure on the cell surface of P. brasiliensis after incubation with iDrk1. Accordingly, through phagocytosis assays, a significantly higher phagocytic index was observed in yeasts treated with iDrk1 than the control group, demonstrating the role of PbDrk1 in cell wall modulation, which then becomes a relevant target to be investigated. In parallel, the immune response profile showed increased levels of proinflammatory cytokines. Finally, our data strongly suggest that PbDrk1 modulates cell wall component expression, among which we can identify β-glucan. Understanding this signalling pathway may be of great value for identifying targets of antifungal molecular activity since HKs are not present in mammals.


2009 ◽  
Vol 46 (10) ◽  
pp. 731-741 ◽  
Author(s):  
Dongmei Li ◽  
David Williams ◽  
Douglas Lowman ◽  
Mario A. Monteiro ◽  
Xuan Tan ◽  
...  

1989 ◽  
Vol 53 (1) ◽  
pp. 9-18
Author(s):  
Takuo Sakai ◽  
Masahiko Sawada ◽  
Tohoru Katsuragi ◽  
Kenzo Tonomura
Keyword(s):  

2003 ◽  
Vol 3 (3) ◽  
pp. 289-299 ◽  
Author(s):  
Michael Kruppa ◽  
Tresa Goins ◽  
Jim E Cutler ◽  
Douglas Lowman ◽  
David Williams ◽  
...  
Keyword(s):  

Microbiology ◽  
2010 ◽  
Vol 156 (11) ◽  
pp. 3432-3444 ◽  
Author(s):  
Nina Klippel ◽  
Shuna Cui ◽  
Lothar Groebe ◽  
Ursula Bilitewski

The pathogenic fungus Candida albicans is able to cover its most potent proinflammatory cell wall molecules, the β-glucans, underneath a dense mannan layer, so that the pathogen becomes partly invisible for immune cells such as phagocytes. As the C. albicans histidine kinases Chk1p, Cos1p and CaSln1p had been reported to be involved in virulence and cell wall biosynthesis, we investigated whether deletion of the respective genes influences the activity of phagocytes against C. albicans. We found that among all histidine kinase genes, CHK1 plays a prominent role in phagocyte activation. Uptake of the deletion mutant Δchk1 as well as the acidification of Δchk1-carrying phagosomes was significantly increased compared with the parental strain. These improved activities could be correlated with an enhanced accessibility of the mutant β-1,3-glucans for immunolabelling. In addition, any inhibition of β-1,3-glucan-mediated phagocytosis resulted in a reduced uptake of Δchk1, while ingestion of the parental strain was hardly affected. Moreover, deletion of CHK1 caused an enhanced release of interleukins 6 and 10, indicating a stronger activation of the β-1,3-glucan receptor dectin-1. In conclusion, the Chk1p protein is likely to be involved in masking β-1,3-glucans from immune recognition. As there are no homologues of fungal histidine kinases in mammals, Chk1p has to be considered as a promising target for new antifungal agents.


2002 ◽  
Vol 22 (1-2) ◽  
pp. 209-222 ◽  
Author(s):  
Bénédicte Flambard

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


Sign in / Sign up

Export Citation Format

Share Document