777 Exposure of spontaneous hypertensive rats to ambient particulate matter affects cardiovascular performance in a Langendorff model

2003 ◽  
Vol 2 (1) ◽  
pp. 168-169
Author(s):  
J MEIRING ◽  
K BAGATE ◽  
M GERLOFSNIJLAND ◽  
F CASSEE ◽  
P BORM
2004 ◽  
Vol 197 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Karim Bagate ◽  
James J Meiring ◽  
Miriam E Gerlofs-Nijland ◽  
Renaud Vincent ◽  
Flemming R Cassee ◽  
...  

2017 ◽  
Vol 2017 (67) ◽  
pp. 31-37
Author(s):  
O. Turos ◽  
◽  
T. Maremukha ◽  
I. Kobzarenko ◽  
A. Petrosian ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryota Ko ◽  
Masahiko Hayashi ◽  
Miho Tanaka ◽  
Tomoaki Okuda ◽  
Chiharu Nishita-Hara ◽  
...  

AbstractWe evaluated the effects of ambient particulate matter (PM) on the corneal epithelium using a reconstructed human corneal epithelium (HCE) model. We collected two PM size fractions [aerodynamic diameter smaller than 2.4 µm: PM0.3–2.4 and larger than 2.4 µm: PM>2.4] and exposed these tissues to PM concentrations of 1, 10, and 100 µg/mL for 24 h. After exposure, cell viability and interleukin (IL) IL-6 and IL-8 levels were determined, and haematoxylin and eosin and immunofluorescence staining of the zonula occludens-1 (ZO-1) were performed on tissue sections. In addition, the effects of a certified reference material of urban aerosols (UA; 100 µg/mL) were also examined as a reference. The viability of cells exposed to 100 μg/mL UA and PM>2.4 decreased to 76.2% ± 7.4 and 75.4% ± 16.1, respectively, whereas PM0.3–2.4 exposure had a limited effect on cell viability. These particles did not increase IL-6 and IL-8 levels significantly even though cell viability was decreased in 100 μg/mL UA and PM>2.4. ZO-1 expression was reduced in a dose-dependent manner in all groups. Reconstructed HCE could be used as an in vitro model to study the effects of environmental PM exposure on ocular surface cell viability and inflammation.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 782
Author(s):  
Chia-Chi Ho ◽  
Yu-Cheng Chen ◽  
Ming-Hsien Tsai ◽  
Hui-Ti Tsai ◽  
Chen-Yi Weng ◽  
...  

Epidemiological studies have demonstrated an association between ambient particulate matter (PM) exposure and vascular diseases. Here, we observed that treatment with ambient PM increased cell migration ability in vascular smooth muscle cells (VSMCs) and pulmonary arterial SMCs (PASMCs). These results suggest that VSMCs and PASMCs transitioned from a differentiated to a synthetic phenotype after PM exposure. Furthermore, treatment with PM increased intracellular reactive oxygen species (ROS), activated the NF-κB signaling pathway, and increased the expression of proinflammatory cytokines in VSMCs. Using specific inhibitors, we demonstrated that PM increased the migration ability of VSMCs via the nicotinamide–adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1)/ROS-dependent NF-κB signaling pathway, which also partially involved in the induction of proinflammatory cytokines. Finally, we investigated whether nature polyphenolic compounds prevent PM-induced migration and proinflammatory cytokines secretion in VSMCs. Curcumin, resveratrol, and gallic acid prevented PM2.5-induced migration via the ROS-dependent NF-κB signaling pathway. However, honokiol did not prevent PM2.5-induced migration or activation of the ROS-dependent NF-κB signaling pathway. On the other hand, all polyphenols prevented PM2.5-induced cytokines secretion. These data indicated that polyphenols prevented PM-induced migration and cytokine secretion via blocking the ROS-dependent NF-κB signaling pathway in VSMCs. However, other mechanisms may also contribute to PM-induced cytokine secretion.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 462
Author(s):  
Manousos-Ioannis Manousakas

Research related to ambient particulate matter (PM) remains very relative today due to the adverse effects PM have on human health. [...]


Sign in / Sign up

Export Citation Format

Share Document