WS09.4 Next generation sequencing in newborn screening for cystic fibrosis

2020 ◽  
Vol 19 ◽  
pp. S15-S16
Author(s):  
J. Vinohradská ◽  
I. Valaskova ◽  
R. Gaillyová
2020 ◽  
Vol 6 (2) ◽  
pp. 36 ◽  
Author(s):  
Miyono M. Hendrix ◽  
Carla D. Cuthbert ◽  
Suzanne K. Cordovado

An increasing number of newborn screening laboratories in the United States and abroad are moving towards incorporating next-generation sequencing technology, or NGS, into routine screening, particularly for cystic fibrosis. As more programs utilize this technology for both cystic fibrosis and beyond, it is critical to identify appropriate DNA extraction methods that can be used with dried blood spots that will result in consistent, high-quality sequencing results. To provide comprehensive quality assurance and technical assistance to newborn screening laboratories wishing to incorporate NGS assays, CDC’s Newborn Screening and Molecular Biology Branch designed a study to evaluate the performance of nine commercial or laboratory-developed DNA extraction methods that range from a highly purified column extraction to a crude detergent-based no-wash boil prep. The DNA from these nine methods was used in two NGS library preparations that interrogate the CFTR gene. All DNA extraction methods including the cruder preps performed reasonably well with both library preps. One lower-concentration, older sample was excluded from one of the assay evaluations due to poor performance across all DNA extraction methods. When 84 samples, versus eight, were run on a flow cell, the DNA quality and quantity were more significant variables.


2021 ◽  
Vol 7 (4) ◽  
pp. 73
Author(s):  
Robert J. Sicko ◽  
Colleen F. Stevens ◽  
Erin E. Hughes ◽  
Melissa Leisner ◽  
Helen Ling ◽  
...  

Newborn screening (NBS) for Cystic Fibrosis (CF) is associated with improved outcomes. All US states screen for CF; however, CF NBS algorithms have high false positive (FP) rates. In New York State (NYS), the positive predictive value of CF NBS improved from 3.7% to 25.2% following the implementation of a three-tier IRT-DNA-SEQ approach using commercially available tests. Here we describe a modification of the NYS CF NBS algorithm via transition to a new custom next-generation sequencing (NGS) platform for more comprehensive cystic fibrosis transmembrane conductance regulator (CFTR) gene analysis. After full gene sequencing, a tiered strategy is used to first analyze only a specific panel of 338 clinically relevant CFTR variants (second-tier), followed by unblinding of all sequence variants and bioinformatic assessment of deletions/duplications in a subset of samples requiring third-tier analysis. We demonstrate the analytical and clinical validity of the assay and the feasibility of use in the NBS setting. The custom assay has streamlined our molecular workflow, increased throughput, and allows for bioinformatic customization of second-tier variant panel content. NBS aims to identify those infants with the highest disease risk. Technological molecular improvements can be applied to NBS algorithms to reduce the burden of FP referrals without loss of sensitivity.


2018 ◽  
Vol 52 ◽  
pp. 48-55 ◽  
Author(s):  
Andraz Smon ◽  
Barbka Repic Lampret ◽  
Urh Groselj ◽  
Mojca Zerjav Tansek ◽  
Jernej Kovac ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ziga I. Remec ◽  
Katarina Trebusak Podkrajsek ◽  
Barbka Repic Lampret ◽  
Jernej Kovac ◽  
Urh Groselj ◽  
...  

Newborn screening was first introduced at the beginning of the 1960s with the successful implementation of the first phenylketonuria screening programs. Early expansion of the included disorders was slow because each additional disorder screened required a separate test. Subsequently, the technological advancements of biochemical methodology enabled the scaling-up of newborn screening, most notably with the implementation of tandem mass spectrometry. In recent years, we have witnessed a remarkable progression of high-throughput sequencing technologies, which has resulted in a continuous decrease of both cost and time required for genetic analysis. This has enabled more widespread use of the massive multiparallel sequencing. Genomic sequencing is now frequently used in clinical applications, and its implementation in newborn screening has been intensively advocated. The expansion of newborn screening has raised many clinical, ethical, legal, psychological, sociological, and technological concerns over time. This review provides an overview of the current state of next-generation sequencing regarding newborn screening including current recommendations and potential challenges for the use of such technologies in newborn screening.


Sign in / Sign up

Export Citation Format

Share Document