Cell-Substrate Adhesion: Induction of Cell Spreading and Apical/Basal Plasma Membrane Polarity

1988 ◽  
Vol 2 ◽  
pp. 91-118 ◽  
Author(s):  
B JACOBSON
1992 ◽  
Vol 101 (4) ◽  
pp. 873-883
Author(s):  
M.L. Lu ◽  
R.J. McCarron ◽  
B.S. Jacobson

It was recently reported that HeLa cells have three Arg-Gly-Asp-dependent collagen receptors that do not appear to be in the integrin family of extracellular matrix receptors and bind to either type I or IV collagen or to type I gelatin. It was our goal to determine how these receptors function in HeLa cell-substratum adhesion. We report here that the sequence of events by which the receptors mediate adhesion to collagen or gelatin is: (1) induction of cell attachment by specific collagen receptor-substratum interactions with culture dishes covalently coated with either type I collagen or gelatin - attachment is inhibited by soluble gelatin; (2) stabilization of attachment by exocytotic upregulation of the receptors to the basal plasma membrane, which was demonstrated by analyzing, during cell adhesion, the redistribution of the collagen receptors among the apical plasma membrane exposed to the culture medium, the basal plasma membrane contacting the culture dish, and an intracellular pool of plasma membrane vesicles; (3) the initiation of cell spreading by receptor clustering and cytoskeletal association. Cell spreading is a threshold effect with regard to the surface concentration of gelatin, indicating that collagen receptor clustering is a precondition to the onset of spreading. Observations consistent with this interpretation of the threshold effect are that cells attach but spread more slowly on a substratum that retards receptor clustering, and that collagen receptors, when viewed by immunofluorescence microscopy, form a punctate pattern of fluorescence in the basal plasma membrane during cell spreading. It is also shown that more collagen receptors co-isolate with nondenaturing detergent-stable cytoskeletal preparations after the collagen receptors have been either clustered by antibodies or gelatin in solution, or by a collagen matrix. This indicates that clustering drives the receptors to bind to the cytoskeleton and is a necessary step in the transition from cell attachment to cell spreading.


2005 ◽  
Vol 16 (6) ◽  
pp. 2681-2693 ◽  
Author(s):  
Catherine P. Chia ◽  
Sujatha Gomathinayagam ◽  
Robert J. Schmaltz ◽  
Laura K. Smoyer

Glycoprotein gp130, found on the plasma membrane of Dictyostelium discoideum amoebae, was postulated previously to play a role in phagocytosis. The gene for gp130 was cloned and when translated, yielded a 768 amino acid preproprotein of 85.3 kDa. It had nearly 40% similarity to the 138 kDa family of glycoproteins implicated in sexual cell fusion during macrocyst formation in D. discoideum. The difference between the calculated size and observed Mrof 130 kDa on protein gels likely was due to N-glycosylation that was confirmed by lectin blots. Consistent with its surface-exposure, an antibody raised against recombinant protein stained the plasma membrane of D. discoideum amoebae. Gp130 and its transcripts were high during axenic growth of cells, but relatively low during growth on bacteria. The gene for gp130 was disrupted and cell lines lacking the glycoprotein were efficient phagocytes, indicating that gp130 was dispensable for phagocytosis. Gp130-null cells were similar in size to parent DH1 cells, had enhanced macropinocytosis and grew faster to higher densities. They also exhibited weaker cell-substrate adhesion but displayed greater cell-cell cohesion. Collectively, the data indicated that gp130 influenced macropinocytosis and played a role in adhesion during vegetative growth.


2009 ◽  
Vol 123 (1) ◽  
pp. 118-127 ◽  
Author(s):  
O. Thompson ◽  
C. J. Moore ◽  
S.-A. Hussain ◽  
I. Kleino ◽  
M. Peckham ◽  
...  

1989 ◽  
Vol 264 (14) ◽  
pp. 8012-8018 ◽  
Author(s):  
M Yamagata ◽  
S Suzuki ◽  
S K Akiyama ◽  
K M Yamada ◽  
K Kimata

1992 ◽  
Vol 118 (5) ◽  
pp. 1235-1244 ◽  
Author(s):  
M H Symons ◽  
T J Mitchison

Cell-substrate adhesion is crucial at various stages of development and for the maintenance of normal tissues. Little is known about the regulation of these adhesive interactions. To investigate the role of GTPases in the control of cell morphology and cell-substrate adhesion we have injected guanine nucleotide analogs into Xenopus XTC fibroblasts. Injection of GTP gamma S inhibited ruffling and increased spreading, suggesting an increase in adhesion. To further investigate this, we made use of GRGDSP, a peptide which inhibits binding of integrins to vitronectin and fibronectin. XTC fibroblasts injected with non-hydrolyzable analogs of GTP took much more time to round up than mock-injected cells in response to treatment with GRGDSP, while GDP beta S-injected cells rounded up in less time than controls. Injection with GTP gamma S did not inhibit cell rounding induced by trypsin however, showing that cell contractility is not significantly affected by the activation of GTPases. These data provide evidence for the existence of a GTPase which can control cell-substrate adhesion from the cytoplasm. Treatment of XTC fibroblasts with the phorbol ester 12-o-tetradecanoylphorbol-13-acetate reduced cell spreading and accelerated cell rounding in response to GRGDSP, which is essentially opposite to the effect exerted by non-hydrolyzable GTP analogs. These results suggest the existence of at least two distinct pathways controlling cell-substrate adhesion in XTC fibroblasts, one depending on a GTPase and another one involving protein kinase C.


Sign in / Sign up

Export Citation Format

Share Document