scholarly journals Glycoprotein gp130 ofDictyostelium discoideumInfluences Macropinocytosis and Adhesion

2005 ◽  
Vol 16 (6) ◽  
pp. 2681-2693 ◽  
Author(s):  
Catherine P. Chia ◽  
Sujatha Gomathinayagam ◽  
Robert J. Schmaltz ◽  
Laura K. Smoyer

Glycoprotein gp130, found on the plasma membrane of Dictyostelium discoideum amoebae, was postulated previously to play a role in phagocytosis. The gene for gp130 was cloned and when translated, yielded a 768 amino acid preproprotein of 85.3 kDa. It had nearly 40% similarity to the 138 kDa family of glycoproteins implicated in sexual cell fusion during macrocyst formation in D. discoideum. The difference between the calculated size and observed Mrof 130 kDa on protein gels likely was due to N-glycosylation that was confirmed by lectin blots. Consistent with its surface-exposure, an antibody raised against recombinant protein stained the plasma membrane of D. discoideum amoebae. Gp130 and its transcripts were high during axenic growth of cells, but relatively low during growth on bacteria. The gene for gp130 was disrupted and cell lines lacking the glycoprotein were efficient phagocytes, indicating that gp130 was dispensable for phagocytosis. Gp130-null cells were similar in size to parent DH1 cells, had enhanced macropinocytosis and grew faster to higher densities. They also exhibited weaker cell-substrate adhesion but displayed greater cell-cell cohesion. Collectively, the data indicated that gp130 influenced macropinocytosis and played a role in adhesion during vegetative growth.

2011 ◽  
Vol 10 (7) ◽  
pp. 977-984 ◽  
Author(s):  
Jelena Pribic ◽  
Rebecca Garcia ◽  
May Kong ◽  
Derrick Brazill

ABSTRACT The actin cytoskeleton forms a membrane-associated network whose proper regulation is essential for numerous processes, including cell differentiation, proliferation, adhesion, chemotaxis, endocytosis, exocytosis, and multicellular development. In this report, we show that in Dictyostelium discoideum , paxillin (PaxB) and phospholipase D (PldB) colocalize and coimmunoprecipitate, suggesting that they interact physically. Additionally, the phenotypes observed during development, cell sorting, and several actin-required processes, including cyclic AMP (cAMP) chemotaxis, cell-substrate adhesion, actin polymerization, phagocytosis, and exocytosis, reveal a genetic interaction between paxB and pldB , suggesting a functional interaction between their gene products. Taken together, our data point to PldB being a required binding partner of PaxB during processes involving actin reorganization.


2011 ◽  
Vol 10 (5) ◽  
pp. 662-671 ◽  
Author(s):  
Anthony S. Kowal ◽  
Rex L. Chisholm

ABSTRACTPrevious work from our laboratory showed that theDictyostelium discoideumSadA protein plays a central role in cell-substrate adhesion. SadA null cells exhibit a loss of adhesion, a disrupted actin cytoskeleton, and a cytokinesis defect. How SadA mediates these phenotypes is unknown. This work addresses the mechanism of SadA function, demonstrating an important role for the C-terminal cytoplasmic tail in SadA function. We found that a SadA tailless mutant was unable to rescue thesadAadhesion deficiency, and overexpression of the SadA tail domain reduced adhesion in wild-type cells. We also show that SadA is closely associated with the actin cytoskeleton. Mutagenesis studies suggested that four serine residues in the tail, S924/S925 and S940/S941, may regulate association of SadA with the actin cytoskeleton. GlutathioneS-transferase pull-down assays identified at least one likely interaction partner of the SadA tail, cortexillin I, a known actin bundling protein. Thus, our data demonstrate an important role for the carboxy-terminal cytoplasmic tail in SadA function and strongly suggest that a phosphorylation event in this tail regulates an interaction with cortexillin I. Based on our data, we propose a model for the function of SadA.


1989 ◽  
Vol 264 (14) ◽  
pp. 8012-8018 ◽  
Author(s):  
M Yamagata ◽  
S Suzuki ◽  
S K Akiyama ◽  
K M Yamada ◽  
K Kimata

1992 ◽  
Vol 118 (5) ◽  
pp. 1235-1244 ◽  
Author(s):  
M H Symons ◽  
T J Mitchison

Cell-substrate adhesion is crucial at various stages of development and for the maintenance of normal tissues. Little is known about the regulation of these adhesive interactions. To investigate the role of GTPases in the control of cell morphology and cell-substrate adhesion we have injected guanine nucleotide analogs into Xenopus XTC fibroblasts. Injection of GTP gamma S inhibited ruffling and increased spreading, suggesting an increase in adhesion. To further investigate this, we made use of GRGDSP, a peptide which inhibits binding of integrins to vitronectin and fibronectin. XTC fibroblasts injected with non-hydrolyzable analogs of GTP took much more time to round up than mock-injected cells in response to treatment with GRGDSP, while GDP beta S-injected cells rounded up in less time than controls. Injection with GTP gamma S did not inhibit cell rounding induced by trypsin however, showing that cell contractility is not significantly affected by the activation of GTPases. These data provide evidence for the existence of a GTPase which can control cell-substrate adhesion from the cytoplasm. Treatment of XTC fibroblasts with the phorbol ester 12-o-tetradecanoylphorbol-13-acetate reduced cell spreading and accelerated cell rounding in response to GRGDSP, which is essentially opposite to the effect exerted by non-hydrolyzable GTP analogs. These results suggest the existence of at least two distinct pathways controlling cell-substrate adhesion in XTC fibroblasts, one depending on a GTPase and another one involving protein kinase C.


1986 ◽  
Vol 103 (5) ◽  
pp. 1679-1687 ◽  
Author(s):  
M C Beckerle

A new protein found at sites of cell-substrate adhesion has been identified by analysis of a nonimmune rabbit serum. By indirect immunofluorescence this serum stains focal contacts (adhesion plaques) and the associated termini of actin filament bundles in cultured chicken cells. Western immunoblot analysis of total chick embryo fibroblast protein demonstrated an 82-kD polypeptide to be the major protein recognized by the unfractionated serum. This 82-kD protein is immunologically distinct from other known adhesion plaque proteins such as vinculin, talin, alpha-actinin, and fimbrin. Antibody affinity-purified against the electrophoretically isolated, nitrocellulose-bound 82-kD protein retained the ability to stain the area of the adhesion plaque, which confirms that the 82-kD protein is indeed a constituent of the focal contact. The 82-kD polypeptide has a basic isoelectric point relative to actin and fibronectin, and it appears to be very low in abundance. The 82-kD protein is ubiquitous in chicken embryo tissues. However, it appears to be more abundant in fibroblasts and smooth muscle than in brain or liver. Intermediate levels of the protein were detected in skeletal and cardiac muscle. The subcellular distribution of the 82-kD protein raises the possibility that this polypeptide is involved in linking actin filaments to the plasma membrane at sites of substrate attachment or regulating these dynamic interactions.


Sign in / Sign up

Export Citation Format

Share Document