protein gels
Recently Published Documents





2022 ◽  
Vol 369 ◽  
pp. 130954
Minghao Zhang ◽  
Li Zhou ◽  
Fu Yang ◽  
Jiaxu Yao ◽  
Yue Ma ◽  

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 178
Carmen Masiá ◽  
Poul Erik Jensen ◽  
Iben Lykke Petersen ◽  
Patrizia Buldo

The production of a fermented plant-based cheese requires understanding the behavior of the selected raw material prior to fermentation. Raw material processing affects physicochemical properties of plant protein ingredients, and it determines their ability to form fermentation-induced protein gels. Moreover, the addition of oil also influences structure formation and therefore affects gel firmness. This study focuses on identifying and characterizing an optimal pea protein matrix suitable for fermentation-induced plant-based cheese. Stability and gel formation were investigated in pea protein matrices. Pea protein isolate (PPI) emulsions with 10% protein and 0, 5, 10, 15, and 20% olive oil levels were produced and further fermented with a starter culture suitable for plant matrices. Emulsion stability was evaluated through particle size, ζ-potential, and back-scattered light changes over 7 h. Gel hardness and oscillation measurements of the fermented gels were taken after 1 and 7 days of storage under refrigeration. The water-holding capacity of the gels was measured after 7 days of storage and their microstructure was visualized with confocal microscopy. Results indicate that all PPI emulsions were physically stable after 7 h. Indeed, ζ-potential did not change significantly over time in PPI emulsions, a bimodal particle size distribution was observed in all samples, and no significant variation was observed after 7 h in any of the samples. Fermentation time oscillated between 5.5 and 7 h in all samples. Higher oil content led to weaker gels and lower elastic modulus and no significant changes in gel hardness were observed over 7 days of storage under refrigeration in closed containers. Water-holding capacity increased in samples with higher olive oil content. Based on our results, an optimal pea protein matrix for fermentation-induced pea protein gels can be produced with 10% protein content and 10% olive oil levels without compromising gel hardness.

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 90
Xiaoyu Yang ◽  
Jiao Feng ◽  
Qianqian Zhu ◽  
Rui Hong ◽  
Liang Li

Exopolysaccharide (EPS) producing lactic acid bacteria (LAB) is considered to be an effective texture improver. The effect of LAB strains (different EPS production capacity) on physicochemical properties (texture profile, water distribution, rheological properties, and microstructure), protein conformation, and chemical forces of soybean protein gel was investigated. Correlations between EPS yield and gel properties were established. Large masses of EPS were isolated from L. casei fermentation gel (L. casei-G, 677.01 ± 19.82 mg/kg). Gel with the highest hardness (319.74 ± 9.98 g) and water holding capacity (WHC, 87.74 ± 2.00%) was also formed with L. casei. The conversion of β-sheet to α-helix, the increased hydrophobic interaction and ionic bond helped to form an ordered gel network. The yield was positively correlated with hardness, WHC, A22, viscoelasticity, and viscosity, but negatively correlated with A23 (p < 0.05). The macromolecular properties of EPS (especially the yield) and its incompatibility with proteins could be explained as the main reason for improving gel properties. In conclusion, the EPS producing LAB, especially L. casei used in our study, is the best ordinary coagulate replacement in soybean-based products.

2021 ◽  
Vol 0 (0) ◽  
Guochuan Jiang ◽  
Lili Tian ◽  
Ruifeng Hu ◽  
Hongrui Sun ◽  
Yuan Fu ◽  

Abstract In order to improve Perccottus glenii myofibrillar protein (MP) gel properties, three treatments were evaluated: ultrasonic, transglutaminase (TGase) and combined ultrasonic-transglutaminase treatments. Combined ultrasonic-transglutaminase treatment altered protein structure and gel properties most dramatically. As compared with untreated control group protein, treated protein gels possessed decreased sulfhydryl group content and increases in water holding capacity, whiteness value and hydrophobic interactions that increased gel strength value by up to 3.79 times that of untreated protein gel. Protein structural and Differential scanning calorimetry (DSC) analyses revealed that combined ultrasonic-TGase treatment increased both protein thermal denaturation temperature and UV absorbance (as compared to control and other treatment groups) that supported formation of MP gels with desirable characteristics. These results provide a theoretical basis for development of superior MP gels to promote greater utilization of this fish protein resource by the food industry.

Takashi Akazawa ◽  
Hikaru Itami ◽  
Toshio Furumoto ◽  
Chie Nozaki ◽  
Hiroyuki Koike ◽  

2021 ◽  
pp. 107350
Zhi Yang ◽  
Liliana de Campo ◽  
Elliot Paul Gilbert ◽  
Robert Knott ◽  
Lirong Cheng ◽  

Daniel G. Greene ◽  
Shannon Modla ◽  
Stanley I. Sandler ◽  
Norman J. Wagner ◽  
Abraham M. Lenhoff

Protein salting-out is a well established phenomenon that in many cases leads to amorphous structures and protein gels, which are usually not considered to be useful for protein structure determination. Here, microstructural measurements of several different salted-out protein dense phases are reported, including of lysozyme, ribonuclease A and an IgG1, showing that salted-out protein gels unexpectedly contain highly ordered protein nanostructures that assemble hierarchically to create the gel. The nanocrystalline domains are approximately 10–100 nm in size, are shown to have structures commensurate with those of bulk crystals and grow on time scales in the order of an hour to a day. Beyond revealing the rich, hierarchical nanoscale to mesoscale structure of protein gels, the nanocrystals that these phases contain are candidates for structural biology on next-generation X-ray free-electron lasers, which may enable the study of biological macromolecules that are difficult or impossible to crystallize in bulk.

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2179
Laura G. Gómez-Mascaraque ◽  
Samantha C. Pinho

This work explores the potential of confocal Raman microscopy to investigate the microstructure of mixed protein gel systems. Heat-set protein gels were prepared using whey protein isolate (WPI), soy protein isolate (SPI), and mixtures thereof, with a total of five different whey-to-soy protein ratios (100, 75, 50, 25, and 0%). These were analysed using confocal Raman microscopy, and different data analysis approaches were used to maximize the amount of structural and compositional information extracted from the spectral datasets generated, including both univariate and multivariate analysis methods. Small spectral differences were found between pure WPI and SPI gels, mainly attributed to conformational differences (amide bands), but SPI exhibited considerably greater auto-fluorescence than WPI. The univariate analysis method allowed for a rapid microstructural analysis, successfully mapping the distribution of protein and water in the gels. The greater fluorescence of the capsule-like structures found in the mixed gels, compared to other regions rich in proteins, suggested that these may be enriched in soy proteins. Further analysis, using a multivariate approach, allowed us to distinguish proteins with different levels of hydration within the gels and to detect non-proteinaceous compounds. Raman microscopy proved to be particularly useful to detect the presence of residual lipids in protein gels.

2021 ◽  
Vol 1 (8) ◽  
pp. 1412-1417 ◽  
Eva M. Herz ◽  
Sabine Schäfer ◽  
Nino Terjung ◽  
Monika Gibis ◽  
Jochen Weiss

Sign in / Sign up

Export Citation Format

Share Document