Initiation of HeLa cell adhesion to collagen is dependent upon collagen receptor upregulation, segregation to the basal plasma membrane, clustering and binding to the cytoskeleton

1992 ◽  
Vol 101 (4) ◽  
pp. 873-883
Author(s):  
M.L. Lu ◽  
R.J. McCarron ◽  
B.S. Jacobson

It was recently reported that HeLa cells have three Arg-Gly-Asp-dependent collagen receptors that do not appear to be in the integrin family of extracellular matrix receptors and bind to either type I or IV collagen or to type I gelatin. It was our goal to determine how these receptors function in HeLa cell-substratum adhesion. We report here that the sequence of events by which the receptors mediate adhesion to collagen or gelatin is: (1) induction of cell attachment by specific collagen receptor-substratum interactions with culture dishes covalently coated with either type I collagen or gelatin - attachment is inhibited by soluble gelatin; (2) stabilization of attachment by exocytotic upregulation of the receptors to the basal plasma membrane, which was demonstrated by analyzing, during cell adhesion, the redistribution of the collagen receptors among the apical plasma membrane exposed to the culture medium, the basal plasma membrane contacting the culture dish, and an intracellular pool of plasma membrane vesicles; (3) the initiation of cell spreading by receptor clustering and cytoskeletal association. Cell spreading is a threshold effect with regard to the surface concentration of gelatin, indicating that collagen receptor clustering is a precondition to the onset of spreading. Observations consistent with this interpretation of the threshold effect are that cells attach but spread more slowly on a substratum that retards receptor clustering, and that collagen receptors, when viewed by immunofluorescence microscopy, form a punctate pattern of fluorescence in the basal plasma membrane during cell spreading. It is also shown that more collagen receptors co-isolate with nondenaturing detergent-stable cytoskeletal preparations after the collagen receptors have been either clustered by antibodies or gelatin in solution, or by a collagen matrix. This indicates that clustering drives the receptors to bind to the cytoskeleton and is a necessary step in the transition from cell attachment to cell spreading.

1992 ◽  
Vol 3 (5) ◽  
pp. 481-492 ◽  
Author(s):  
J S Chun ◽  
B S Jacobson

HeLa cells attach to a variety of substrata but spread only on collagen or gelatin. Spreading is dependent on collagen-receptor upregulation, clustering, and binding to the cytoskeleton. This study examines whether second messengers are involved in initiating the spreading process on gelatin. The levels of cytosolic free calcium ([Ca++]i), cAMP, and cytoplasmic pH (pHi) do not change during cell attachment and spreading. However, a basal level of [Ca++]i and an alkaline pH(i) are required for spreading. There is an activation of protein kinase C (PKC) and a release of arachidonic acid (AA) on attachment and before cell spreading. Inhibition of PKC does not block cell spreading, indicating that PKC activation is not essential for spreading. Inhibition of phospholipase A2 blocks cell spreading, whereas addition of exogeneous AA overcomes this inhibitory effect. Among AA metabolic pathways, inhibitors of lipoxygenase (LOX) block cell spreading, suggesting that a LOX product(s) formed from AA initiates spreading. Clustering receptors for collagen with polyclonal antibodies, or with anti-collagen-receptor antigen-binding fragments (Fab) in combination with a secondary antibody, induce AA release. Also, AA is released when cells attach to either immobilized gelatin or immobilized Arg-Gly-Asp (RGD) peptide. Thus, AA is released whenever receptor clustering is observed. Receptor occupancy is not sufficient to release AA; when cells are treated with gelatin or RGD peptide in solution or anti-collagen-receptor Fab fragments without secondary antibody, conditions where receptor clustering is not observed, AA is not released. Thus, a LOX metabolite(s) of AA formed by collagen-receptor clustering is a second messenger(s) that initiates HeLa cell spreading. LOX inhibitors also block the spreading of bovine aortic endothelial cells, chicken embryo fibroblasts, and CV-1 fibroblasts on gelatin or fibronectin, indicating that other cells might use the same second messenger system in initiating cell-substratum adhesion.


1990 ◽  
Vol 95 (2) ◽  
pp. 255-262
Author(s):  
W.D. Norris ◽  
J.G. Steele ◽  
G. Johnson ◽  
P.A. Underwood

The initial attachment and spreading of endothelial cells from human umbilical artery onto type I collagen, type IV collagen or gelatin substrata was shown to be enhanced by inclusion of serum in the culture medium. To test whether this serum effect was mediated by adsorption of serum fibronectin or vitronectin onto the collagen, these adhesive glycoproteins were selectively removed from the serum prior to addition to the culture medium. The stimulatory effect of serum on human endothelial cell spreading on collagens I and IV was also observed with serum from which either fibronectin or vitronectin, or both, had been selectively removed. The stimulatory effect for cell spreading on gelatin was diminished by selective removal of serum fibronectin, but unaffected by removal of vitronectin. Human endothelial cell attachment and spreading onto tissue culture plastic was abolished by removal of vitronectin from the serum in the culture medium. These results emphasize that the native structure of collagens is required for serum-enhancement of human endothelial cell attachment and spreading on native collagen types I and IV, and show that on these substrata the stimulated adhesion and spreading are not dependent upon adsorption of serum fibronectin or vitronectin onto the collagen substratum.


2013 ◽  
Vol 58 (4) ◽  
Author(s):  
Zdzisław Świderski ◽  
Isabel Montoliu ◽  
Carlos Feliu ◽  
David Gibson ◽  
Jordi Miquel

AbstractThe tegument of the microphallid digenean Maritrema feliui, examined by means of TEM, is described as a syncytial epithelium organised into two layers. The outer layer is an external anucleate, cytoplasmic region connected to a second region composed of nucleate perikarya (cytons) deeply embedded in the surrounding cortical parenchyma. The surface layer of the tegument is covered by a plasma membrane with many deep invaginations, which are apparently pinocytotic. This layer also bears numerous large, electron-dense spines of two types, which are intracellular and attached to the basal plasma membrane. Its cytoplasm is rich in free ribosomes, contains numerous mitochondria, disc-shaped granules frequently arranged in a rouleau, and several large, moderately electron-dense, membranous bodies. The subtegumentary perikarya and their nuclei, which are both flattened, are described in detail, as are their connections with the surface tegument. These perikarya appear to be the source of the disc-shaped granules and some of the other inclusions present in the surface layer. The main characteristics of the tegumental structure of M. feliui are commented upon in relation to the findings of previous publications and their suggested functions.


2019 ◽  
Vol 104 (9) ◽  
pp. 4225-4238 ◽  
Author(s):  
Laura B James-Allan ◽  
Jaron Arbet ◽  
Stephanie B Teal ◽  
Theresa L Powell ◽  
Thomas Jansson

AbstractContextPlacental transport capacity influences fetal glucose supply. The syncytiotrophoblast is the transporting epithelium in the human placenta, expressing glucose transporters (GLUTs) and insulin receptors (IRs) in its maternal-facing microvillous plasma membrane (MVM) and fetal-facing basal plasma membrane (BM).ObjectiveThe objectives of this study were to (i) determine the expression of the insulin-sensitive GLUT4 glucose transporter and IR in the syncytiotrophoblast plasma membranes across gestation in normal pregnancy and in pregnancies complicated by maternal obesity, and (ii) assess the effect of insulin on GLUT4 plasma membrane trafficking in human placental explants.Design, Setting, and ParticipantsPlacental tissue was collected across gestation from women with normal body mass index (BMI) and mothers with obesity with appropriate for gestational age and macrosomic infants. MVM and BM were isolated.Main Outcome MeasuresProtein expression of GLUT4, GLUT1, and IR were determined by western blot.ResultsGLUT4 was exclusively expressed in the BM, and IR was predominantly expressed in the MVM, with increasing expression across gestation. BM GLUT1 expression was increased and BM GLUT4 expression was decreased in women with obesity delivering macrosomic babies. In placental villous explants, incubation with insulin stimulated Akt (S473) phosphorylation (+76%, P = 0.0003, n = 13) independent of maternal BMI and increased BM GLUT4 protein expression (+77%, P = 0.0013, n = 7) in placentas from lean women but not women with obesity.ConclusionWe propose that maternal insulin stimulates placental glucose transport by promoting GLUT4 trafficking to the BM, which may enhance glucose transfer to the fetus in response to postprandial hyperinsulinemia in women with normal BMI.


1991 ◽  
Vol 260 (6) ◽  
pp. G887-G894 ◽  
Author(s):  
M. Y. el-Mir ◽  
N. Eleno ◽  
M. A. Serrano ◽  
P. Bravo ◽  
J. J. Marin

The efflux of [14C]taurocholate from previously loaded vesicles, obtained from basal plasma membrane of human trophoblast, was studied. Apparent Km (620 microM) and Vmax (1.79 nmol.min-1.mg protein-1) values were similar to those found in influx experiments (Marin et al., Gastroenterology 99: 1431-1438, 1990). Transmembrane gradients of both bicarbonate (100 mM) and unlabeled taurocholate (0.5 mM) accelerated [14C]taurocholate efflux. The bicarbonate-induced effect was not abolished by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and K(+)-valinomycin voltage clamp. Neither was it mimicked by 5,5'-dimethyloxazolidine 2,4-dione (DMO) or by other organic (taurine, glycine, lactate, or acetate) or inorganic (Cl-, SCN-, HPO24-, or SO24-) anions, and it was not sensitive to carbonic anhydrase inhibitors. No effect of bicarbonate was observed either in the absence of gradient or in the presence of a cis-directed gradient. Bicarbonate-induced transstimulation was related to an increase in the value for the apparent Vmax (+30%). Study of the stoichiometry suggests that the most probable coupling ratio is one, bicarbonate: taurocholate. In summary, these results provide evidence for the existence of a bicarbonate-driven anion exchange in the basal plasma membrane of the human term placental trophoblast.


Sign in / Sign up

Export Citation Format

Share Document