119 SEX DIFFERENCE IN EXPRESSION PROFILES OF ACID-SENSING ION CHANNELS AND TRANSIENT RECEPTOR POTENTIAL CHANNEL V1 IN THE MOUSE URINARY BLADDER

2010 ◽  
Vol 9 (2) ◽  
pp. 70
Author(s):  
H. Kobavashi ◽  
M. Yoshiyama ◽  
I. Araki ◽  
S. Kira ◽  
H. Inuzuka ◽  
...  
2020 ◽  
Vol 21 (17) ◽  
pp. 6221 ◽  
Author(s):  
Ramón Cobo ◽  
Jorge García-Piqueras ◽  
Yolanda García-Mesa ◽  
Jorge Feito ◽  
Olivia García-Suárez ◽  
...  

The vertebrate skin contains sensory corpuscles that are receptors for different qualities of mechanosensitivity like light brush, touch, pressure, stretch or vibration. These specialized sensory organs are linked anatomically and functionally to mechanosensory neurons, which function as low-threshold mechanoreceptors connected to peripheral skin through Aβ nerve fibers. Furthermore, low-threshold mechanoreceptors associated with Aδ and C nerve fibers have been identified in hairy skin. The process of mechanotransduction requires the conversion of a mechanical stimulus into electrical signals (action potentials) through the activation of mechanosensible ion channels present both in the axon and the periaxonal cells of sensory corpuscles (i.e., Schwann-, endoneurial- and perineurial-related cells). Most of those putative ion channels belong to the degenerin/epithelial sodium channel (especially the family of acid-sensing ion channels), the transient receptor potential channel superfamilies, and the Piezo family. This review updates the current data about the occurrence and distribution of putative mechanosensitive ion channels in cutaneous mechanoreceptors including primary sensory neurons and sensory corpuscles.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 147
Author(s):  
Yu Fu ◽  
Peng Shang ◽  
Bo Zhang ◽  
Xiaolong Tian ◽  
Ruixue Nie ◽  
...  

In animals, muscle growth is a quantitative trait controlled by multiple genes. Previously, we showed that the transient receptor potential channel 1 (TRPC1) gene was differentially expressed in muscle tissues between pig breeds with divergent growth traits base on RNA-seq. Here, we characterized TRPC1 expression profiles in different tissues and pig breeds and showed that TRPC1 was highly expressed in the muscle. We found two single nucleotide polymorphisms (SNPs) (C-1763T and C-1604T) in TRPC1 that could affect the promoter region activity and regulate pig growth rate. Functionally, we used RNAi and overexpression to illustrate that TRPC1 promotes myoblast proliferation, migration, differentiation, fusion, and muscle hypertrophy while inhibiting muscle degradation. These processes may be mediated by the activation of Wnt signaling pathways. Altogether, our results revealed that TRPC1 might promote muscle growth and development and plays a key role in Wnt-mediated myogenesis.


2007 ◽  
Vol 292 (3) ◽  
pp. G699-G705 ◽  
Author(s):  
Peter Holzer

Luminal acidity is a physiological challenge in the foregut, and acidosis can occur throughout the gastrointestinal tract as a result of inflammation or ischemia. These conditions are surveyed by an elaborate network of acid-governed mechanisms to maintain homeostasis. Deviations from physiological values of extracellular pH are monitored by multiple acid sensors expressed by epithelial cells and sensory neurons. Acid-sensing ion channels are activated by moderate acidification, whereas transient receptor potential ion channels of the vanilloid subtype are gated by severe acidosis. Some ionotropic purinoceptor ion channels and two-pore domain background K+ channels are also sensitive to alterations of extracellular pH.


2010 ◽  
Vol 112 (3) ◽  
pp. 729-741 ◽  
Author(s):  
John P. M. White ◽  
Mario Cibelli ◽  
Antonio Rei Fidalgo ◽  
Cleoper C. Paule ◽  
Faruq Noormohamed ◽  
...  

Pain originating in inflammation is the most common pathologic pain condition encountered by the anesthesiologist whether in the context of surgery, its aftermath, or in the practice of pain medicine. Inflammatory agents, released as components of the body's response to peripheral tissue damage or disease, are now known to be collectively capable of activating transient receptor potential vanilloid type 1, transient receptor potential vanilloid type 4, transient receptor potential ankyrin type 1, and acid-sensing ion channels, whereas individual agents may activate only certain of these ion channels. These ionotropic receptors serve many physiologic functions-as, indeed, do many of the inflammagens released in the inflammatory process. Here, we introduce the reader to the role of these ionotropic receptors in mediating peripheral pain in response to inflammation.


2019 ◽  
Vol 374 (1785) ◽  
pp. 20190291 ◽  
Author(s):  
Luke A. Pattison ◽  
Gerard Callejo ◽  
Ewan St John Smith

Nociceptors, i.e. sensory neurons tuned to detect noxious stimuli, are found in numerous phyla of the Animalia kingdom and are often polymodal, responding to a variety of stimuli, e.g. heat, cold, pressure and chemicals, such as acid. Owing to the ability of protons to have a profound effect on ionic homeostasis and damage macromolecular structures, it is no wonder that the ability to detect acid is conserved across many species. To detect changes in pH, nociceptors are equipped with an assortment of different acid sensors, some of which can detect mild changes in pH, such as the acid-sensing ion channels, proton-sensing G protein-coupled receptors and several two-pore potassium channels, whereas others, such as the transient receptor potential vanilloid 1 ion channel, require larger shifts in pH. This review will discuss the evolution of acid sensation and the different mechanisms by which nociceptors can detect acid. This article is part of the Theo Murphy meeting issue ‘Evolution of mechanisms and behaviour important for pain’.


2021 ◽  
Vol 22 (11) ◽  
pp. 6024
Author(s):  
Kirsten Ackermann ◽  
Susanne Wallner ◽  
Christoph Brochhausen ◽  
Stephan Schreml

The acid-sensing ion channels ASIC1 and ASIC2, as well as the transient receptor potential vanilloid channels TRPV1 and TRPV4, are proton-gated cation channels that can be activated by low extracellular pH (pHe), which is a hallmark of the tumor microenvironment in solid tumors. However, the role of these channels in the development of skin tumors is still unclear. In this study, we investigated the expression profiles of ASIC1, ASIC2, TRPV1 and TRPV4 in malignant melanoma (MM), squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and in nevus cell nevi (NCN). We conducted immunohistochemistry using paraffin-embedded tissue samples from patients and found that most skin tumors express ASIC1/2 and TRPV1/4. Striking results were that BCCs are often negative for ASIC2, while nearly all SCCs express this marker. Epidermal MM sometimes seem to lack ASIC1 in contrast to NCN. Dermal portions of MM show strong expression of TRPV1 more frequently than dermal NCN portions. Some NCN show a decreasing ASIC1/2 expression in deeper dermal tumor tissue, while MM seem to not lose ASIC1/2 in deeper dermal portions. ASIC1, ASIC2, TRPV1 and TRPV4 in skin tumors might be involved in tumor progression, thus being potential diagnostic and therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document