Mitochondrial complex I gene mutations drive metabolic reprogramming in prostate cancer

2019 ◽  
Vol 18 (8) ◽  
pp. e3041
Author(s):  
B. Schöpf ◽  
H. Weissensteiner ◽  
G. Schäfer ◽  
A. Naschberger ◽  
B. Rupp ◽  
...  
2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A652-A652
Author(s):  
Priyamvada Jayaprakash ◽  
Meghan Rice ◽  
Krithikaa Rajkumar Bhanu ◽  
Brittany Morrow ◽  
Joseph Marszalek ◽  
...  

BackgroundDespite the success of immunotherapy in immune-infiltrated ”hot” tumors like melanoma, ”cold” tumors like prostate cancer remain unresponsive [1,2,3]. We find that these tumors harbor regions of hypoxia that act as islands of immune privilege that exclude T cells, while retaining immunosuppressive myeloid cells. Targeting hypoxia using the hypoxia-activated prodrug, TH-302 (Evofosfamide) reduced hypoxic regions and co-operated with immune checkpoint blockade (anti-CTLA-4+anti PD-1) to drive tumor regression in transplantable and spontaneous murine prostate tumors [4]. In a Phase I clinical trial, the combination of Evofosfamide and anti CTLA-4 (Ipilimumab) elicited both objective responses and prolonged disease stabilization in late-stage ”cold” tumor patients. However, Evofosfamide reduces but does not eliminate hypoxia and patient tumors resistant to treatment with Evofosfamide and Ipilimumab were hyper-metabolic [5]. Heightened tumor oxidative metabolism has been shown to generate hypoxic zones that resist PD-1 blockade therapy [6] and treatment with Metformin, a mitochondrial complex I inhibitor may reduce hypoxia and improve responses [7]. We hypothesized that targeting tumor oxidative metabolism using mitochondrial complex I inhibitors might diminish tumor hypoxia and, in conjunction with Evofosfamide, sensitize unresponsive tumors to immunotherapy.MethodsWe investigated the capacity of two mitochondrial complex I inhibitors to reduce tumor oxidative metabolism, diminish myeloid suppressive capacity and improve anti-tumor T cell immunity, alone and in combination with Evofosfamide and checkpoint blockade. We assessed tumor burden and immune composition and characterized metabolic profiles using Seahorse XFe96 analyzer (Agilent).ResultsWhile Evofosfamide or inhibition of oxidative metabolism alone did not significantly impact tumor regression, dual combination and triple combination with checkpoint blockade led to a significant reduction in tumor burden. Assessment of the tumor immune microenvironment identified improvements in CD8 and CD4 effector T cell proliferation. In vitro metabolic and functional profiling of TRAMP-C2 prostate tumors, pre-activated T cells and myeloid derived suppressor cells revealed differential effects of complex I inhibition, with inhibition resulting in reduced tumor proliferation and myeloid suppressive function but increases in proliferation and cytotoxic function of pre-activated T cells.ConclusionsOur findings indicate that tumor hypoxia and associated immune suppressive programming can be reduced through both local tissue remodeling and limitation of tumor oxygen metabolism. Complex I inhibition selectively inhibits tumor and myeloid cell function, while sparing T cells. This provides opportunities to craft synergistic immuno-metabolic therapies with the potential to treat ”cold” tumor patients refractory to current FDA approved immunotherapeutics.ReferencesCurran MA, Montalvo W, Yagita H, and Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010; 107(9): 4275–80.Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013; 369(2): 122–33.Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, doubleblind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12.Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T, Sheng J, et al. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J Clin Invest. 2018; 128 (11): 5137–5149.Hegde A, Jayaprakash P, Couillault CA, Piha-Paul S, Karp D, Rodon J, et al. A Phase I Dose-Escalation Study to Evaluate the Safety and Tolerability of Evofosfamide in Combination with Ipilimumab in Advanced Solid Malignancies. Clin Cancer Res. 2021; 27(11): 3050–3060.Najjar YG, Menk AV, Sander C, Rao U, Karunamurthy A, Bhatia R, et al. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. JCI Insight. 2019 4(5): e124989. A.Scharping NE, Menk AV, Whetstone RD, Zeng X, Delgoffe GM. Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypoxia. Cancer Immunol Res. 2017; 5(1):9–16.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 532
Author(s):  
Misa Hirose ◽  
Paul Schilf ◽  
Kim Zarse ◽  
Hauke Busch ◽  
Georg Fuellen ◽  
...  

Mitochondrial complex I—the largest enzyme complex of the mitochondrial oxidative phosphorylation machinery—has been proposed to contribute to a variety of age-related pathological alterations as well as longevity. The enzyme complex-consisting proteins are encoded by both nuclear (nDNA) and mitochondrial DNA (mtDNA). While some association studies of mtDNA encoded complex I genes and lifespan in humans have been reported, experimental evidence and the functional consequence of such variants is limited to studies using invertebrate models. Here, we present experimental evidence that a homoplasmic mutation in the mitochondrially encoded complex I gene mt-Nd2 modulates lifespan by altering cellular tryptophan levels and, consequently, ageing-related pathways in mice. A conplastic mouse strain carrying a mutation at m.4738C > A in mt-Nd2 lived slightly, but significantly, shorter than the controls did. The same mutation led to a higher susceptibility to glucose intolerance induced by high-fat diet feeding. These phenotypes were not observed in mice carrying a mutation in another mtDNA encoded complex I gene, mt-Nd5, suggesting the functional relevance of particular mutations in complex I to ageing and age-related diseases.


Neurology ◽  
2012 ◽  
Vol 78 (Meeting Abstracts 1) ◽  
pp. P02.172-P02.172 ◽  
Author(s):  
E. Sekul ◽  
S. Strickland ◽  
D. Flannery ◽  
R. Figueroa ◽  
A. Vanderver

2018 ◽  
Author(s):  
Misa Hirose ◽  
Paul Schilf ◽  
Kim Zarse ◽  
Hauke Busch ◽  
Georg Füllen ◽  
...  

AbstractMitochondrial complex I, the largest enzyme complex of the mitochondrial oxidative phosphorylation machinery, has been proposed to contribute to a variety of age-related pathological alterations as well as longevity. The enzyme complex-consisting proteins are encoded by both nuclear (nDNA) and mitochondrial DNA (mtDNA). While some association studies of mtDNA-encoded complex I genes and lifespan in humans have been reported, experimental evidence and the functional consequence of such variants is limited to studies using invertebrate models. Here, we present experimental evidence that a homoplasmic mutation in the mitochondrially encoded complex I gene mt-Nd2 modulates lifespan by altering cellular tryptophan levels and, consequently, ageing-related pathways in mice. A conplastic mouse strain carrying a mutation at m.4738C>A in mt-Nd2 lived significantly shorter than the controls did. The same mutation led to a higher susceptibility to glucose intolerance induced by high-fat diet feeding. These phenotypes were not observed in mice carrying a mutation in another mtDNA-encoded complex I gene, mt-Nd5, suggesting the functional relevance of particular mutations in complex I to ageing and age-related diseases.


Neurogenetics ◽  
2003 ◽  
Vol 4 (4) ◽  
pp. 199-205 ◽  
Author(s):  
DavidK. Simon ◽  
Jennifer Friedman ◽  
XandraO. Breakefield ◽  
Joseph Jankovic ◽  
MitchellF. Brin ◽  
...  

2001 ◽  
Vol 38 (1) ◽  
pp. 58-61 ◽  
Author(s):  
D. K. SIMON ◽  
M. A. TARNOPOLSKY ◽  
J. T. GREENAMYRE ◽  
D. R. JOHNS

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Massimiliano Cazzaniga ◽  
Bernardo Bonanni

Metabolic reprogramming refers to the ability of cancer cells to alter their metabolism in order to support the increased energy request due to continuous growth, rapid proliferation, and other characteristics typical of neoplastic cells. It has long been believed that the increase of metabolic request was independent of the mitochondrial action but recently we know that mitochondrial activity together with metabolism plays a pivotal role in the regulation of the energy needed for tumor cell growth and proliferation. For these reasons the mitochondria pathways could be a new target for therapeutic and chemopreventive intervention. Metformin in particular is actually considered a promising agent against mitochondrial activity thanks to its ability to inhibit the mitochondrial complex I.


Sign in / Sign up

Export Citation Format

Share Document