OC.10.6: Protective Effects of Aryl Hydrocarbon Receptor Signalling in Celiac Disease Mucosa and in a Mouse Model of Poly I:C-Induced Small Intestinal Atrophy

2017 ◽  
Vol 49 ◽  
pp. e104
Author(s):  
I. Monteleone ◽  
R. Izzo ◽  
D. Di Fusco ◽  
V. Dinallo ◽  
I. Marafini ◽  
...  
Author(s):  
Hua Miao ◽  
Xia‐Qing Wu ◽  
Yan‐Ni Wang ◽  
Dan‐Qian Chen ◽  
Lin Chen ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nemanja Sarić ◽  
Matthew Selby ◽  
Vijay Ramaswamy ◽  
Marcel Kool ◽  
Brigitta Stockinger ◽  
...  

AbstractSonic Hedgehog (SHH) medulloblastomas are brain tumours that arise in the posterior fossa. Cancer-propagating cells (CPCs) provide a reservoir of cells capable of tumour regeneration and relapse post-treatment. Understanding and targeting the mechanisms by which CPCs are maintained and expanded in SHH medulloblastoma could present novel therapeutic opportunities. We identified the aryl hydrocarbon receptor (AHR) pathway as a potent tumour suppressor in a SHH medulloblastoma mouse model. Ahr-deficient tumours and CPCs grown in vitro, showed elevated activation of the TGFβ mediator, SMAD3. Pharmacological inhibition of the TGFβ/SMAD3 signalling axis was sufficient to inhibit the proliferation and promote the differentiation of Ahr-deficient CPCs. Human SHH medulloblastomas with high expression of the AHR repressor (AHRR) exhibited a significantly worse prognosis compared to AHRRlow tumours in two independent patient cohorts. Together, these findings suggest that reduced AHR pathway activity promotes SHH medulloblastoma progression, consistent with a tumour suppressive role for AHR. We propose that TGFβ/SMAD3 inhibition may represent an actionable therapeutic approach for a subset of aggressive SHH medulloblastomas characterised by reduced AHR pathway activity.


2020 ◽  
Vol 12 (566) ◽  
pp. eaba0624 ◽  
Author(s):  
Bruno Lamas ◽  
Leticia Hernandez-Galan ◽  
Heather J. Galipeau ◽  
Marco Constante ◽  
Alexandra Clarizio ◽  
...  

Metabolism of tryptophan by the gut microbiota into derivatives that activate the aryl hydrocarbon receptor (AhR) contributes to intestinal homeostasis. Many chronic inflammatory conditions, including celiac disease involving a loss of tolerance to dietary gluten, are influenced by cues from the gut microbiota. We investigated whether AhR ligand production by the gut microbiota could influence gluten immunopathology in nonobese diabetic (NOD) mice expressing DQ8, a celiac disease susceptibility gene. NOD/DQ8 mice, exposed or not exposed to gluten, were subjected to three interventions directed at enhancing AhR pathway activation. These included a high-tryptophan diet, gavage with Lactobacillus reuteri that produces AhR ligands or treatment with an AhR agonist. We investigated intestinal permeability, gut microbiota composition determined by 16S rRNA gene sequencing, AhR pathway activation in intestinal contents, and small intestinal pathology and inflammatory markers. In NOD/DQ8 mice, a high-tryptophan diet modulated gut microbiota composition and enhanced AhR ligand production. AhR pathway activation by an enriched tryptophan diet, treatment with the AhR ligand producer L. reuteri, or pharmacological stimulation using 6-formylindolo (3,2-b) carbazole (Ficz) decreased immunopathology in NOD/DQ8 mice exposed to gluten. We then determined AhR ligand production by the fecal microbiota and AhR activation in patients with active celiac disease compared to nonceliac control individuals. Patients with active celiac disease demonstrated reduced AhR ligand production and lower intestinal AhR pathway activation. These results highlight gut microbiota-dependent modulation of the AhR pathway in celiac disease and suggest a new therapeutic strategy for treating this disorder.


Sign in / Sign up

Export Citation Format

Share Document