Wound healing and anti-inflammatory activities of bee venom-chitosan blend films

2008 ◽  
Vol 18 (6) ◽  
pp. 424-430 ◽  
Author(s):  
M.A. Amin ◽  
I.T. Abdel-Raheem ◽  
H.R. Madkor
Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
F Epifano ◽  
S Genovese ◽  
L Zhao ◽  
V Dang La ◽  
D Grenier

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Keizo Kohno ◽  
Satomi Koya-Miyata ◽  
Akira Harashima ◽  
Takahiko Tsukuda ◽  
Masataka Katakami ◽  
...  

Abstract Background NK-4 has been used to promote wound healing since the early-1950s; however, the mechanism of action of NK-4 is unknown. In this study, we examined whether NK-4 exerts a regulatory effect on macrophages, which play multiple roles during wound healing from the initial inflammatory phase until the tissue regeneration phase. Results NK-4 treatment of THP-1 macrophages induced morphological features characteristic of classically-activated M1 macrophages, an inflammatory cytokine profile, and increased expression of the M1 macrophage-associated molecules CD38 and CD86. Interestingly, NK-4 augmented TNF-α production by THP-1 macrophages in combination with LPS, Pam3CSK4, or poly(I:C). Furthermore, NK-4 treatment enhanced THP-1 macrophage phagocytosis of latex beads. These results indicate that NK-4 drives macrophage polarization toward an inflammatory M1-like phenotype with increased phagocytic activity. Efferocytosis is a crucial event for resolution of the inflammatory phase in wound healing. NK-4-treated THP-1 macrophages co-cultured with apoptotic Jurkat E6.1 (Apo-J) cells switched from an M1-like phenotype to an M2-like phenotype, as seen in the inverted ratio of TNF-α to IL-10 produced in response to LPS. We identified two separate mechanisms that are involved in this phenotypic switch. First, recognition of phosphatidylserine molecules on Apo-J cells by THP-1 macrophages downregulates TNF-α production. Second, phagocytosis of Apo-J cells by THP-1 macrophages and activation of PI3K/Akt signaling pathway upregulates IL-10 production. Conclusion It is postulated that the phenotypic switch from a proinflammatory M1-like phenotype to an anti-inflammatory M2-like phenotype is dysregulated due to impaired efferocytosis of apoptotic neutrophils at the wound site. Our results demonstrate that NK-4 improves phagocytosis of apoptotic cells, suggesting its potential as a therapeutic strategy to resolve sustained inflammation in chronic wounds.


2012 ◽  
Vol 139 (2) ◽  
pp. 401-408 ◽  
Author(s):  
Ayşegül Güvenç ◽  
Esra Küpeli Akkol ◽  
M. Mesud Hürkul ◽  
İpek Süntar ◽  
Hikmet Keleş

Toxicon ◽  
2012 ◽  
Vol 60 (2) ◽  
pp. 115-116
Author(s):  
Mohammad Nabiuni ◽  
Kazem Parivar ◽  
Bahman Zeynali ◽  
Azar Sheikholeslami ◽  
Latifeh Karimzadeh

Author(s):  
Satomi Ozawa ◽  
Shigeyuki Mukudai ◽  
Mami Kaneko ◽  
Shota Kinoshita ◽  
Keiko Hashimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document