In vitro anti-inflammatory and wound healing activities of Citrus auraptene

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
F Epifano ◽  
S Genovese ◽  
L Zhao ◽  
V Dang La ◽  
D Grenier
Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Burns ◽  
2008 ◽  
Vol 34 (6) ◽  
pp. 845-855 ◽  
Author(s):  
C.J. Beukelman ◽  
A.J.J. van den Berg ◽  
M.J. Hoekstra ◽  
R. Uhl ◽  
K. Reimer ◽  
...  

2021 ◽  
Vol 266 ◽  
pp. 113408
Author(s):  
Mehmet Evren Okur ◽  
Ayşe Esra Karadağ ◽  
Yağmur Özhan ◽  
Hande Sipahi ◽  
Şule Ayla ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 1845 ◽  
Author(s):  
Alexandra M. Afonso ◽  
Joana Gonçalves ◽  
Ângelo Luís ◽  
Eugenia Gallardo ◽  
Ana Paula Duarte

Honey and propolis are natural substances produced by Apis mellifera that contain flavonoids, phenolic acids, and several other phytochemicals. The aim of this study was to phytochemically characterize three different types of honey and propolis, both separately and mixed, and to evaluate their wound-healing activity. Total phenolic compounds and flavonoids were determined using the Folin–Ciocalteu’s and aluminum chloride colorimetric methods, respectively. The antioxidant activity was evaluated by both the DPPH free radical scavenging assay and β-carotene bleaching test, and the anti-inflammatory activity was determined by a protein denaturation method. To evaluate the wound-healing activity of the samples, NHDF cells were subjected to a wound scratch assay. The obtained results showed that dark-brown honey presents a higher concentration of phenolic compounds and flavonoids, as well as higher antioxidant and anti-inflammatory activities. Propolis samples had the highest concentrations in bioactive compounds. Examining the microscopic images, it was possible to verify that the samples promote cell migration, demonstrating the wound-healing potential of honey and propolis.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3353 ◽  
Author(s):  
Oya Ustuner ◽  
Ceren Anlas ◽  
Tulay Bakirel ◽  
Fulya Ustun-Alkan ◽  
Belgi Diren Sigirci ◽  
...  

Thymus sipyleus Boiss. subsp. rosulans (Borbas) Jalas (TS) is a commonly used plant in the treatment of various complaints, including skin wounds in Turkish folk medicine. Despite the widespread traditional use of TS, there is not any scientific report confirming the effectiveness of this plant on the healing process. This research aimed to investigate the effects of different extracts obtained from TS on biological events during wound healing, on a cellular basis. In this context, proliferative activities of the extracts, as well as the effects on wound closure and hydroxyproline synthesis, were determined. In addition to wound healing properties, the antioxidant, antibacterial and anti-inflammatory activities of the extracts were evaluated. Decoction (D) and infusion (I) extracts contained the highest amount of phenolic content and showed the most potent activity against DPPH radical. All extracts exhibited complete protection against the damage induced by hydrogen peroxide (H2O2) by increasing cell viability compared to only H2O2-treated groups, both in co-treatment and pre-treatment protocols. None of the extracts exhibited cytotoxic activity, and most of the extracts from the TS stimulated fibroblast proliferation and migration. All TS extracts exert anti-inflammatory activity by suppressing the overproduction of tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO). The most pronounced activity on hydroxyproline synthesis was observed in D extract. In summary, it was observed that TS extracts can promote the healing process by enhancing fibroblast migration, proliferation and collagen synthesis as well as suppressing pro-inflammatory cytokines. The obtained data in this work support the traditional use of TS as a valuable plant-based compound for the treatment of wounds.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
José Alex A. Santos ◽  
José Wellinton da Silva ◽  
Simone Maria dos Santos ◽  
Maria de Fátima Rodrigues ◽  
Camila Joyce A. Silva ◽  
...  

Babassu (Attalea speciosa Mart. ex Spreng., Arecaceae) is a palm tree endemic to Brazil and found mainly in the borders of Amazon forest, where the harvesting of its fruits is an important source of income for more than 300,000 people. Among the communities of coconut breakers women, babassu oil is used in culinary, as fuel, and mostly as medicinal oil for the treatment of skin wounds and inflammation. This study aimed to evaluate in vitro and in vivo the wound healing effects of babassu oil. In vitro, babassu oil increased the migration of L929 fibroblasts, inhibited the production of nitric oxide by LPS-stimulated peritoneal macrophages, and increased the levels of INF-γ and IL-6 cytokines production. In vivo, babassu oil accelerated the healing process in a full-thickness splinted wound model, by an increase in the fibroblasts number, blood vessels, and collagen deposition in the wounds. The babassu oil also increased the recruitment of inflammatory cells into the wound site and showed an anti-inflammatory effect in a chronic ear edema model, reducing ear thickness, epidermal hyperplasia, and myeloperoxidase activity. Thus, these data corroborate the use of babassu oil in folk medicine as a remedy to treat skin wounds.


Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1036-1043 ◽  
Author(s):  
Triantafyllos Chavakis ◽  
Athanasios Athanasopoulos ◽  
Joong-Sup Rhee ◽  
Valeria Orlova ◽  
Thomas Schmidt-Wöll ◽  
...  

AbstractAngiogenesis and inflammation are closely related biologic processes in wound healing and the responses to vascular injury as well as in cardiovascular diseases; however, the molecular connections are poorly defined. In particular, it is yet unclear whether endogenous factors can regulate both angiogenesis and inflammation. Here, we show that the endogenous angiogenesis inhibitor, angiostatin (containing kringle domains 1-4 of plasminogen), serves an anti-inflammatory role, since the kringles 1-3 and its kringle 4 directly interact with leukocyte β1- and β2-integrins, respectively. In particular, a specific interaction between kringle 4 and αMβ2-integrin (Mac-1) but not leukocyte function antigen 1 (LFA-1) was identified. Angiostatin thereby inhibited β1- and β2-integrin–mediated adhesion of leukocytes to extracellular matrix proteins and the endothelium as well as their transmigration through the endothelium in vitro. Moreover, angiostatin blocked the peritonitis-induced neutrophil emigration in vivo. In addition, through its interaction with Mac-1, angiostatin reduced activation of the proinflammatory transcription factor nuclear factor κB (NFκB), as well as the NFκB-related expression of tissue factor, a potent initiator of hemostasis following vascular injury. Finally, angiostatin forms were generated in vivo following skin injury/inflammation and were detectable during the following entire period of wound healing peaking at the terminal phase of the healing process. Taken together, over and above inhibition of neovascularization, angiostatin was identified as an antiadhesive/anti-inflammatory substance. These observations could provide the basis for new therapeutic applications of angiostatin to target chronic inflammatory processes in different pathologic situations.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ahmed Abdel-Lateff ◽  
Ashraf B. Abdel-Naim ◽  
Walied M. Alarif ◽  
Mardi M. Algandaby ◽  
Najla A. Alburae ◽  
...  

Euryops arabicus Steud (E. arabicus) belongs to the family Asteraceae. It has several uses in folk medicine in the Arabian Peninsula. The current study aimed at evaluating the wound healing properties of the E. arabicus extract in rats. Primarily, E. arabicus successfully accelerated cell migration in vitro and it also showed no signs of dermal toxicity. Topical application of E. arabicus extract (5% or 20%) expedited healing of excised skin in rats. Histological examinations indicated that E. arabicus shortened epithelization period, stimulated fibroblast activity, and increased collagen deposition in wound tissues. The plant extract exerted antioxidant activity as evidenced by inhibition of GSH depletion and MDA accumulation and enhanced mRNA expression of Sod1 in wound tissues collected at the end of the experiment. Further, E. arabicus inhibited the rise of TNF-α and IL-1β in the skin wound region. The anti-inflammatory was confirmed by the observed down regulation of Ptgs2, Nos2, IL-6, and NF-κB mRNA expression. In addition, the extract enhanced the expression of TGF-β1 and HIF-1α in wounded skin tissues as indicated immunohistochemically. Conclusively, E. arabicus expedites excision wound healing in rats. Collagen-enhancing, anti-inflammatory, and antioxidant properties mediate the observed wound healing activity. These findings might contribute to our understanding of the ethnobotanical use of E. arabicus in wounds.


2020 ◽  
Author(s):  
Artur Shariev ◽  
Alistair J. Laos ◽  
Donna Lai ◽  
Sheng Hua ◽  
Anna Zinger ◽  
...  

AbstractSuperoxide dismutase (SOD) is known to be protective against oxidative stress-mediated skin dysfunction. Here we explore the potential therapeutic activities of RM191A, a novel SOD mimetic, on skin. RM191A is a water soluble, dimeric copper (Cu2+-Cu3+)-centred polyglycine coordination complex. It displays 10-fold higher superoxide quenching activity compared to SOD as well as significant anti-inflammatory activity through beneficial modulation of several significant inflammatory pathways in cells.We tested the therapeutic potential of RM191A in a topical gel using a human skin explant model and observed that it significantly inhibits UV-induced DNA damage in the epidermis and dermis, including cyclobutane pyrimidine dimers (CPD), 8-oxo-guanine (8-oxoG) and 8-nitroguanine (8NGO). RM191A topical gel is found to be safe and non-toxic in mice following month-long daily dosing at 0.19 mL/kg body weight. Moreover, it significantly accelerates excisional wound healing, and reduces 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice.HighlightsSuperoxide dismutase mimetic RM191A is a highly stable copper (Cu2+-Cu3+)-polyglycine coordination complexRM191A exhibits potent antioxidant (10-fold more than that of superoxide dismutase) properties in vitroRM191A exhibits potent anti-inflammatory properties in vitro and in vivoRM191A protects human skin explants against UV-induced oxidative stress and DNA damageRM191A is non-toxic and readily bioavailable in miceRM191A attenuates TPA-induced skin inflammation and improves wound healing in mice


2020 ◽  
Vol 4 (1) ◽  
pp. e100064
Author(s):  
Dereje Nigussie ◽  
Belete Adefris Legesse ◽  
Gail Davey ◽  
Abebaw Fekadu ◽  
Eyasu Makonnen

ObjectivesMedicinal plants are used globally as alternative medicines in the management of a range of disease conditions and are widely accepted across differing societies. Ethiopia hosts a large number of plant species (>7000 higher plant species), of which around 12% are thought to be endemic, making it a rich source of plant extracts potentially useful for human health. The aim of this review is to evaluate Ethiopian medicinal plants for their anti-inflammatory, wound healing, antifungal or antibacterial activities.Methods and analysisThe guidance of the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) statement will be used. This review will consider all controlled studies of anti-inflammatory and wound healing properties (both in vivo and in vitro) and in vitro anti-infective properties of medicinal plants found in Ethiopia. Data sources will be EMBASE, PubMed/Medline, Scopus and Google Scholar. Guidance documents on good in vitro methods and checklists for reporting in vitro studies will be used for quality assessment of in vitro studies. The risk of bias tool for animal intervention studies (the SYRCLE RoB tool) will be used to assess the validity of studies. The main outcomes will be percent inhibition of inflammation, time of epithelisation and tissue tensile strength in wounds and microbial growth inhibition.Ethics and disseminationThe findings of this systematic review will be disseminated by publishing in a peer-reviewed journal and via conference presentations. Ethical clearance was obtained from the Brighton and Sussex Medical School, Research Governance & Ethics Committee (RGEC) and Addis Ababa University, College of Health Science, Institutional Review Board.PROSPERO registration numberThis systematic literature review has been registered with PROSPERO (registration number CRD42019127471).


Sign in / Sign up

Export Citation Format

Share Document