A novel anionic cathelicidin lacking direct antimicrobial activity but with potent anti-inflammatory and wound healing activities from the salamander Tylototriton kweichowensis

Biochimie ◽  
2021 ◽  
Vol 191 ◽  
pp. 37-50
Author(s):  
Xuanjin Luo ◽  
Jianhong Ouyang ◽  
Yan Wang ◽  
Minghui Zhang ◽  
Lei Fu ◽  
...  
2018 ◽  
Vol 30 (4) ◽  
pp. 863-871 ◽  
Author(s):  
Eva Pinho ◽  
Ricardo C. Calhelha ◽  
Isabel C.F.R. Ferreira ◽  
Graça Soares

Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
F Epifano ◽  
S Genovese ◽  
L Zhao ◽  
V Dang La ◽  
D Grenier

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Keizo Kohno ◽  
Satomi Koya-Miyata ◽  
Akira Harashima ◽  
Takahiko Tsukuda ◽  
Masataka Katakami ◽  
...  

Abstract Background NK-4 has been used to promote wound healing since the early-1950s; however, the mechanism of action of NK-4 is unknown. In this study, we examined whether NK-4 exerts a regulatory effect on macrophages, which play multiple roles during wound healing from the initial inflammatory phase until the tissue regeneration phase. Results NK-4 treatment of THP-1 macrophages induced morphological features characteristic of classically-activated M1 macrophages, an inflammatory cytokine profile, and increased expression of the M1 macrophage-associated molecules CD38 and CD86. Interestingly, NK-4 augmented TNF-α production by THP-1 macrophages in combination with LPS, Pam3CSK4, or poly(I:C). Furthermore, NK-4 treatment enhanced THP-1 macrophage phagocytosis of latex beads. These results indicate that NK-4 drives macrophage polarization toward an inflammatory M1-like phenotype with increased phagocytic activity. Efferocytosis is a crucial event for resolution of the inflammatory phase in wound healing. NK-4-treated THP-1 macrophages co-cultured with apoptotic Jurkat E6.1 (Apo-J) cells switched from an M1-like phenotype to an M2-like phenotype, as seen in the inverted ratio of TNF-α to IL-10 produced in response to LPS. We identified two separate mechanisms that are involved in this phenotypic switch. First, recognition of phosphatidylserine molecules on Apo-J cells by THP-1 macrophages downregulates TNF-α production. Second, phagocytosis of Apo-J cells by THP-1 macrophages and activation of PI3K/Akt signaling pathway upregulates IL-10 production. Conclusion It is postulated that the phenotypic switch from a proinflammatory M1-like phenotype to an anti-inflammatory M2-like phenotype is dysregulated due to impaired efferocytosis of apoptotic neutrophils at the wound site. Our results demonstrate that NK-4 improves phagocytosis of apoptotic cells, suggesting its potential as a therapeutic strategy to resolve sustained inflammation in chronic wounds.


2012 ◽  
Vol 139 (2) ◽  
pp. 401-408 ◽  
Author(s):  
Ayşegül Güvenç ◽  
Esra Küpeli Akkol ◽  
M. Mesud Hürkul ◽  
İpek Süntar ◽  
Hikmet Keleş

2013 ◽  
Vol 63 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Mohammed Afzal Azam ◽  
Loganathan Dharanya ◽  
Charu Chandrakant Mehta ◽  
Sumit Sachdeva

In the present study, a series of benzothiazol derivatives 3a-l containing pyrazolo[3,4-d]pyrimidine moiety at the second position were synthesized and characterized by analytical and spectral data. The compounds were tested for their in vitro antimicrobial activity. Compounds 1-(1,3-benzothiazol-2- yl)-3-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3a), 1- (1,3-benzothiazol-2-yl)-4-(4-chlorophenyl)-3-methyl-1H-pyrazolo[ 3,4-d]pyrimidine (3d) and 1-(1,3-benzothiazol-2-yl)- 3-methyl-4-substituted phenyl-1H-pyrazolo[3,4-d]pyrimidines (3h-j) showed significant inhibitory activity against P. aeruginosa whereas compounds 1-(1,3-benzothiazol-2-yl)-4- (2-chlorophenyl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidine (3b), 2-[1-(1,3-benzothiazol-2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidin- 4-yl]phenol (3e), 1-(1,3-benzothiazol-2-yl)-4-(3,4-dimethoxyphenyl)- 3-methyl-1H-pyrazolo[3,4-d]pyrimidine (3h), 4-[1-(1,3-benzothiazol-2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyri midin-4-yl]-N,N-dimethylaniline (3j) and 1-(1,3-benzothiazol- 2-yl)-3-methyl-4-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidine (3k) were found to be active against C. albicans. Some of these synthesized compounds were evaluated for their in vivo acute toxicity, analgesic, anti-inflammatory, and ulcerogenic actions. The tested compound 4-[1-(1,3-benzothiazol- 2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl]-N, N-dimethylaniline (3j) exhibited maximum analgesic and anti-inflammatory activities. Compounds 1-(1,3-benzothiazol- -2-yl)-3-methyl-4-(3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidine (3i) and 3j showed a significant gastrointestinal protection compared to the standard drug diclofenac sodium.


Author(s):  
Satomi Ozawa ◽  
Shigeyuki Mukudai ◽  
Mami Kaneko ◽  
Shota Kinoshita ◽  
Keiko Hashimoto ◽  
...  

Author(s):  
Pehlivanović Belma ◽  
Čaklovica Kenan ◽  
Lagumdžija Dina ◽  
Omerović Naida ◽  
Žiga Smajić Nermina ◽  
...  

The pursuance of novel antimicrobial and anti-inflammatory agents has been expanding due to a significant need for more efficient pharmacotherapy of various infections and chronic diseases. During the last decade, pharmacokinetics, pharmacodynamics and pharmacological properties of curcumin have been extensively studied. The aim of the present study was to evaluate the antibacterial activity of curcumin against both Gram-positive and Gram-negative bacteria as well as its antifungal activity by using in vitro agar well diffusion assay. Moreover, the anti-inflammatory activity of curcumin was determined with in vitro assay of inhibition of protein denaturation. Results demonstrated wide antimicrobial activity of curcumin upon all of the test bacteria and fungi. The strongest activity of curcumin was observed at a concentration of 0.50 mg/ml against S. aureus, L. monocytogenes, E. coli, P. aeruginosa and C. albicans, resulting in a maximum zone of inhibition of 14.7 mm, 14.3 mm, 13.7 mm, 10.7 mm and 10.7 mm, respectively. Findings suggested that the antimicrobial activity of curcuminis dependent upon the concentrations. Furthermore, results demonstrated high effectiveness of curcumin compared to standard acetylsalicylic acid in inhibiting heat-induced protein denaturation, which activity is also depended upon the concentrations. The present study emphasises the potential application of curcumin as a natural antimicrobial and anti-inflammatory agent. However, findings of this study are restricted to in vitro assays and consideration should be given to conducting a study involving wider dose range test substances as well as including further research on in vivo models.


Sign in / Sign up

Export Citation Format

Share Document