20 DNA Unwinding Enzymes

The Enzymes ◽  
1981 ◽  
pp. 367-372 ◽  
Author(s):  
Malcolm L. Gefter
Keyword(s):  
2021 ◽  
Vol 22 (12) ◽  
pp. 6643
Author(s):  
Pawel Jaworski ◽  
Dorota Zyla-Uklejewicz ◽  
Malgorzata Nowaczyk-Cieszewska ◽  
Rafal Donczew ◽  
Thorsten Mielke ◽  
...  

oriC is a region of the bacterial chromosome at which the initiator protein DnaA interacts with specific sequences, leading to DNA unwinding and the initiation of chromosome replication. The general architecture of oriCs is universal; however, the structure of oriC and the mode of orisome assembly differ in distantly related bacteria. In this work, we characterized oriC of Helicobacter pylori, which consists of two DnaA box clusters and a DNA unwinding element (DUE); the latter can be subdivided into a GC-rich region, a DnaA-trio and an AT-rich region. We show that the DnaA-trio submodule is crucial for DNA unwinding, possibly because it enables proper DnaA oligomerization on ssDNA. However, we also observed the reverse effect: DNA unwinding, enabling subsequent DnaA–ssDNA oligomer formation—stabilized DnaA binding to box ts1. This suggests the interplay between DnaA binding to ssDNA and dsDNA upon DNA unwinding. Further investigation of the ts1 DnaA box revealed that this box, together with the newly identified c-ATP DnaA box in oriC1, constitute a new class of ATP–DnaA boxes. Indeed, in vitro ATP–DnaA unwinds H. pylori oriC more efficiently than ADP–DnaA. Our results expand the understanding of H. pylori orisome formation, indicating another regulatory pathway of H. pylori orisome assembly.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1357
Author(s):  
Rubén Torres ◽  
Carolina Gándara ◽  
Begoña Carrasco ◽  
Ignacio Baquedano ◽  
Silvia Ayora ◽  
...  

The DNA damage checkpoint protein DisA and the branch migration translocase RecG are implicated in the preservation of genome integrity in reviving haploid Bacillus subtilis spores. DisA synthesizes the essential cyclic 3′, 5′-diadenosine monophosphate (c‑di-AMP) second messenger and such synthesis is suppressed upon replication perturbation. In vitro, c-di-AMP synthesis is suppressed when DisA binds DNA structures that mimic stalled or reversed forks (gapped forks or Holliday junctions [HJ]). RecG, which does not form a stable complex with DisA, unwinds branched intermediates, and in the presence of a limiting ATP concentration and HJ DNA, it blocks DisA-mediated c-di-AMP synthesis. DisA pre-bound to a stalled or reversed fork limits RecG-mediated ATP hydrolysis and DNA unwinding, but not if RecG is pre-bound to stalled or reversed forks. We propose that RecG-mediated fork remodeling is a genuine in vivo activity, and that DisA, as a molecular switch, limits RecG-mediated fork reversal and fork restoration. DisA and RecG might provide more time to process perturbed forks, avoiding genome breakage.


1986 ◽  
Vol 261 (25) ◽  
pp. 11744-11750 ◽  
Author(s):  
A Sugino ◽  
B H Ryu ◽  
T Sugino ◽  
L Naumovski ◽  
E C Friedberg

1994 ◽  
Vol 13 (20) ◽  
pp. 4991-5001 ◽  
Author(s):  
N. Tuteja ◽  
R. Tuteja ◽  
A. Ochem ◽  
P. Taneja ◽  
N.W. Huang ◽  
...  

2007 ◽  
Vol 17 (4) ◽  
pp. 1013-1017 ◽  
Author(s):  
Ruel E. McKnight ◽  
Aaron B. Gleason ◽  
James A. Keyes ◽  
Sadia Sahabi

FEBS Letters ◽  
2000 ◽  
Vol 477 (1-2) ◽  
pp. 129-134 ◽  
Author(s):  
Hitoshi Kurumizaka ◽  
Hideki Aihara ◽  
Shukuko Ikawa ◽  
Takehiko Shibata

Sign in / Sign up

Export Citation Format

Share Document