Faculty Opinions recommendation of The antibiotic sorangicin A inhibits promoter DNA unwinding in a Mycobacterium tuberculosis rifampicin-resistant RNA polymerase.

Author(s):  
Neeraj Dhar
2014 ◽  
Vol 42 (16) ◽  
pp. 10399-10408 ◽  
Author(s):  
Yangbo Hu ◽  
Zakia Morichaud ◽  
Ayyappasamy Sudalaiyadum Perumal ◽  
Françoise Roquet-Baneres ◽  
Konstantin Brodolin

2018 ◽  
Author(s):  
Wei Lin ◽  
Sukhendu Mandal ◽  
David Degen ◽  
Min Sung Cho ◽  
Yu Feng ◽  
...  

SUMMARYExtracytoplasmic (ECF) σ factors, the largest class of alternative σ factors, are related to primary σ factors, but have simpler structures, comprising only two of the six conserved functional modules present in primary σ factors: region 2 (σR2) and region 4 (σR4). Here, we report crystal structures of transcription initiation complexes containing Mycobacterium tuberculosis RNA polymerase (RNAP), M. tuberculosis ECF σ factor σL, and promoter DNA. The structures show that σR2 and σR4 of the ECF σ factor occupy the same sites on RNAP as in primary σ factors, show that the connector between σR2 and σR4 of the ECF σ factor--although unrelated in sequence--follows the same path through RNAP as in primary σ factors, and show that the ECF σ factor uses the same strategy to bind and unwind promoter DNA as primary σ factors. The results define protein-protein and protein-DNA interactions involved in ECF-σ-factor-dependent transcription initiation.


2020 ◽  
Vol 117 (48) ◽  
pp. 30423-30432
Author(s):  
Mirjana Lilic ◽  
James Chen ◽  
Hande Boyaci ◽  
Nathaniel Braffman ◽  
Elizabeth A. Hubin ◽  
...  

Rifampicin (Rif) is a first-line therapeutic used to treat the infectious disease tuberculosis (TB), which is caused by the pathogenMycobacterium tuberculosis(Mtb). The emergence of Rif-resistant (RifR)Mtbpresents a need for new antibiotics. Rif targets the enzyme RNA polymerase (RNAP). Sorangicin A (Sor) is an unrelated inhibitor that binds in the Rif-binding pocket of RNAP. Sor inhibits a subset of RifRRNAPs, including the most prevalent clinical RifRRNAP substitution found inMtbinfected patients (S456>L of the β subunit). Here, we present structural and biochemical data demonstrating that Sor inhibits the wild-typeMtbRNAP by a similar mechanism as Rif: by preventing the translocation of very short RNAs. By contrast, Sor inhibits the RifRS456L enzyme at an earlier step, preventing the transition of a partially unwound promoter DNA intermediate to the fully opened DNA and blocking the template-strand DNA from reaching the active site in the RNAP catalytic center. By defining template-strand blocking as a mechanism for inhibition, we provide a mechanistic drug target in RNAP. Our finding that Sor inhibits the wild-type and mutant RNAPs through different mechanisms prompts future considerations for designing antibiotics against resistant targets. Also, we show that Sor has a better pharmacokinetic profile than Rif, making it a suitable starting molecule to design drugs to be used for the treatment of TB patients with comorbidities who require multiple medications.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Hande Boyaci ◽  
James Chen ◽  
Mirjana Lilic ◽  
Margaret Palka ◽  
Rachel Anne Mooney ◽  
...  

Fidaxomicin (Fdx) is an antimicrobial RNA polymerase (RNAP) inhibitor highly effective against Mycobacterium tuberculosis RNAP in vitro, but clinical use of Fdx is limited to treating Clostridium difficile intestinal infections due to poor absorption. To identify the structural determinants of Fdx binding to RNAP, we determined the 3.4 Å cryo-electron microscopy structure of a complete M. tuberculosis RNAP holoenzyme in complex with Fdx. We find that the actinobacteria general transcription factor RbpA contacts fidaxomycin, explaining its strong effect on M. tuberculosis. Additional structures define conformational states of M. tuberculosis RNAP between the free apo-holoenzyme and the promoter-engaged open complex ready for transcription. The results establish that Fdx acts like a doorstop to jam the enzyme in an open state, preventing the motions necessary to secure promoter DNA in the active site. Our results provide a structural platform to guide development of anti-tuberculosis antimicrobials based on the Fdx binding pocket.


2003 ◽  
Vol 50 (4) ◽  
pp. 909-920 ◽  
Author(s):  
Iwona K Kolasa ◽  
Tomasz Łoziński ◽  
Kazimierz L Wierzchowski

A-tracts in DNA due to their structural morphology distinctly different from the canonical B-DNA form play an important role in specific recognition of bacterial upstream promoter elements by the carboxyl terminal domain of RNA polymerase alpha subunit and, in turn, in the process of transcription initiation. They are only rarely found in the spacer promoter regions separating the -35 and -10 recognition hexamers. At present, the nature of the protein-DNA contacts formed between RNA polymerase and promoter DNA in transcription initiation can only be inferred from low resolution structural data and mutational and crosslinking experiments. To probe these contacts further, we constructed derivatives of a model Pa promoter bearing in the spacer region one or two An (n = 5 or 6) tracts, in phase with the DNA helical repeat, and studied the effects of thereby induced perturbation of promoter DNA structure on the kinetics of open complex (RPo) formation in vitro by Escherichia coli RNA polymerase. We found that the overall second-order rate constant ka of RPo formation, relative to that at the control promoter, was strongly reduced by one to two orders of magnitude only when the A-tracts were located in the nontemplate strand. A particularly strong 30-fold down effect on ka was exerted by nontemplate A-tracts in the -10 extended promoter region, where an involvement of nontemplate TG (-14, -15) sequence in a specific interaction with region 3 of sigma-subunit is postulated. A-tracts in the latter location caused also 3-fold slower isomerization of the first closed transcription complex into the intermediate one that precedes formation of RPo, and led to two-fold faster dissociation of the latter. All these findings are discussed in relation to recent structural and kinetic models of RPo formation.


2015 ◽  
Vol 11 (6) ◽  
pp. 296-301 ◽  
Author(s):  
Aayatti Mallick Gupta ◽  
◽  
Simanti Bhattacharya ◽  
Angshuman Bagchi ◽  
Sukhendu Mandal ◽  
...  

1983 ◽  
Vol 3 (12) ◽  
pp. 2172-2179
Author(s):  
H Ernst ◽  
W Filipowicz ◽  
A J Shatkin

Transcription of cloned adenovirus, beta-globin, and retrovirus long terminal repeat DNAs in HeLa whole-cell lysate was inhibited by S-adenosylhomocysteine. However, full-length 1.7-kilobase transcripts made on adenovirus 2 late promoter DNA contained 5'-terminal GpppA, consistent with specific initiation and runoff synthesis in the absence of product methylation. Formation of runoff transcripts including retrovirus RNAs that normally contain 5'-m7GpppGmpC was not decreased by replacing GTP with non-hydrolyzable analogs, and Rous-associated virus-2 runoff products made in the presence of GTP-gamma-S contained 5'-terminal gamma-S-pppGpC. The results indicate that capping and specific transcript synthesis by RNA polymerase II are not obligatorily linked in HeLa whole-cell lysate. Accurate initiation is dependent on ATP hydrolysis, and in contrast to GTP, replacement of ATP by 5'-adenylyl-imidodiphosphate blocked specific initiation of transcripts that start with either GTP (Rous-associated virus-2, Rous-associated virus-0) or ATP (beta-globin, adenovirus).


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung-Hoon Jun ◽  
Jaekyung Hyun ◽  
Jeong Seok Cha ◽  
Hoyoung Kim ◽  
Michael S. Bartlett ◽  
...  

AbstractOpening of the DNA binding cleft of cellular RNA polymerase (RNAP) is necessary for transcription initiation but the underlying molecular mechanism is not known. Here, we report on the cryo-electron microscopy structures of the RNAP, RNAP-TFEα binary, and RNAP-TFEα-promoter DNA ternary complexes from archaea, Thermococcus kodakarensis (Tko). The structures reveal that TFEα bridges the RNAP clamp and stalk domains to open the DNA binding cleft. Positioning of promoter DNA into the cleft closes it while maintaining the TFEα interactions with the RNAP mobile modules. The structures and photo-crosslinking results also suggest that the conserved aromatic residue in the extended winged-helix domain of TFEα interacts with promoter DNA to stabilize the transcription bubble. This study provides a structural basis for the functions of TFEα and elucidates the mechanism by which the DNA binding cleft is opened during transcription initiation in the stalk-containing RNAPs, including archaeal and eukaryotic RNAPs.


Sign in / Sign up

Export Citation Format

Share Document