scholarly journals 0130 : Is the stem cell antigen 1 involved in the brain natriuretic peptide effect on cardiac precursor cells?

2015 ◽  
Vol 7 (2) ◽  
pp. 149
Author(s):  
Fabien Cusin ◽  
Stéphanie Rignault ◽  
Christelle Bielmann ◽  
Suzanne Badoux ◽  
Lucas Liaudet ◽  
...  
1994 ◽  
Vol 86 (6) ◽  
pp. 723-730 ◽  
Author(s):  
B. M. Y. Cheung ◽  
J. E. C. Dickerson ◽  
M. J. Ashby ◽  
M. J. Brown ◽  
J. Brown

1. Brain natriuretic peptide, closely related to atrial natriuretic peptide in structure, may be an important circulating hormone. Its physiological role is unclear. First, we studied the effects of incremental infusions of brain natriuretic peptide in six healthy men on plasma brain natriuretic peptide levels and the pharmacokinetics of brain natriuretic peptide. Synthetic human brain natriuretic peptide-32 was infused intravenously, at an initial rate of 0.4 pmol min−1 kg−1, doubling every 15 min until the dose rate reached 6.4 pmol min−1 kg−1, at which rate the infusion was maintained for 30 min. 2. The brain natriuretic peptide infusion raised the brain natriuretic peptide-like immunoreactivity from 1.4 ± 0.5 pmol/l to 21.4 ± 7.6 pmol/l. Brain natriuretic peptide-like immunoreactivity after the end of infusion was consistent with a bi-exponential decay, with half-lives of 2.1 min and 37 min. 3. Next, we studied the effects of low-dose infusion of brain natriuretic peptide to mimic physiological increments in the circulating levels in comparison with atrial natriuretic peptide. Six dehydrated male subjects received intravenous infusions of atrial natriuretic peptide and brain natriuretic peptide, separately and in combination, in a randomized double-blind, placebo-controlled, four-part cross-over design. Atrial natriuretic peptide and brain natriuretic peptide were given at the rate of 0.75 and 0.4 pmol min−1 kg−1, respectively, for 3 h. The control infusion consisted of the vehicle. 4. Analysis of variance showed that atrial natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide, but not brain natriuretic peptide alone, increased urinary flow and decreased urinary osmolality significantly. However, urinary sodium excretion was significantly increased by atrial natriuretic peptide, brain natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide. 5. None of the four infusates significantly altered the blood pressure, heart rate or glomerular filtration rate. 6. This study showed, for the first time, that physiological increments in brain natriuretic peptide, like those in atrial natriuretic peptide, are natriuretic. Although atrial natriuretic peptide and brain natriuretic peptide do not appear to interact synergistically, they are likely to act in concert in the physiological regulation of sodium balance.


2020 ◽  
Vol 21 (7) ◽  
pp. 2347
Author(s):  
Chengyang Xu ◽  
Ang Zheng ◽  
Tianyi He ◽  
Zhipeng Cao

Background: Cardiac complications after a stroke are the second leading cause of death worldwide, affecting the treatment and outcomes of stroke patients. Cardiac biomarkers such as cardiac troponin (cTn), brain natriuretic peptide (BNP), and N-terminal pro-brain natriuretic peptide (NT-proBNP) have been frequently reported in patients undergoing a stroke. The aim of the present study is to meta-analyze the relationship between changes in such cardiac biomarkers and stroke and to present a systematic review of the previous literature, so as to explore the brain–heart axis. Methods: We searched four online databases pertinent to the literature, including PubMed, Embase, the Cochrane Library, and the Web of Science. Then, we performed a meta-analysis to investigate changes in cTn, BNP, and NT-proBNP associated with different types of stroke. Results and Conclusions: A significant increase in cTnI concentration was found in patients exhibiting a brain hemorrhage. BNP increased in cases of brain infarction, while the NT-proBNP concentration was significantly elevated in patients suffering an acute ischemic stroke and brain hemorrhage, indicating cardiac damage and dysfunction after a stroke. Our analysis suggests that several potential mechanisms may be involved in the brain–heart axis. Finally, clinicians should pay careful attention to monitoring cardiac function in the treatment of cerebrovascular diseases in order to provide a timely and more accurate treatment.


Gene ◽  
2021 ◽  
Vol 768 ◽  
pp. 145305
Author(s):  
Xiaolong Tian ◽  
Jun Ma ◽  
Yijing Wu ◽  
Pan Zhang ◽  
Qinggang Li ◽  
...  

2018 ◽  
Vol 49 (2) ◽  
Author(s):  
Nikolaos Baltayiannis ◽  
Michail Tsimpinos ◽  
Evangelia Grisbolaki ◽  
Antonios Chatzimichalis ◽  
Periklis Tomos

Sign in / Sign up

Export Citation Format

Share Document