scholarly journals Integrated application of February Orchid (Orychophragmus violaceus) as green manure with chemical fertilizer for improving grain yield and reducing nitrogen losses in spring maize system in northern China

2015 ◽  
Vol 14 (12) ◽  
pp. 2490-2499 ◽  
Author(s):  
Jin-shun BAI ◽  
Wei-dong CAO ◽  
Jing XIONG ◽  
Nao-hua ZENG ◽  
Song-juan GAO ◽  
...  
Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 111
Author(s):  
Haixia Wu ◽  
Hantao Hao ◽  
Hongzhen Lei ◽  
Yan Ge ◽  
Hengtong Shi ◽  
...  

The excessive use of fertilizer has resulted in serious environmental degradation and a high health cost in China. Understanding the reasons for the overuse of fertilizer is critical to the sustainable development of Chinese agriculture, and large-scale operation is considered as one of the measures to deal with the excessive fertilizer use. Under the premise of fully considering the resource endowment and heterogeneity of large-scale farmers and small-scale farmers in production and management, different production decision-making frameworks were constructed. Based on the 300 large-scale farmers and 480 small-scale farmers in eight provinces of northern China wheat region, we analyzed the optimal fertilizer use amount and its deviation as well as the influencing factors of small-scale and large-scale farmers, then further clarified whether the development of scale management could solve the problem of excessive fertilizer use. The empirical results show that: (1) both small-scale farmers and large-scale farmers deviated from the optimal fertilizer application amount, where the deviation degree of optimal fertilizer application of small-scale farmers is significantly higher than that of large-scale farmers, with a deviation degree of 35.43% and 23.69% for small and large scale farmers, respectively; (2) not all wheat growers in North China had the problem of excessive use of chemical fertilizer, as the optimal level of chemical fertilizer application in Heilongjiang and Inner Mongolia are 346.5 kgha−1 and 335.25 kgha−1, while the actual fertilizer use amount was 337.2 kgha−1 and 324.6 kgha−1, respectively; and (3) the higher the risk aversion level, farmers tended to apply more fertilizer to ensure grain output. Therefore, increasing farm size should be integrated into actions such as improving technological innovation and providing better information transfer to achieve the goal of zero-increase in Chinese fertilizer use.


2015 ◽  
Vol 17 (1) ◽  
pp. 1-10
Author(s):  
MZ Siam ◽  
SS Hossain ◽  
AK Hassan ◽  
MA Kader

An experiment was conducted at the net house of Department of Agronomy, Bangladesh Agricultural University, Mymensingh from July to December 2012to investigate the ameliorative effect of green manure and gypsum application on the yield of transplant Aman rice variety BRRI dhan40 under various levels salinity stress. Sodium chloride induced salinity was imposed at tillering stage of plant development. The levels of salinity were 0, 25 and 50 mM NaCl. Green manure @ 0, 5 and 10 t ha gypsum @ 0 and 1 g kg-1 and 1 soil were applied to ameliorate the salinity stress effect. 1 g kg-1 soil were applied to ameliorate the salinity stress effect. Results revealed that the different levels of salinity had significant adverse effect on plant height, number of tillers hill-1, number of effective tillers hill-1, number of ineffective tillers hill-1, 1000-grain weight, grain yield, biological yield and harvest index (HI). All the plants were affected badly when they were exposed to salinity level of 50 mM NaCl. Application of green manure and gypsum helped them ameiorate salinity either individually or in combination at all salinity levels. Grain yield reduction at 50 mM salinity level was 38.64% compared to control which was minimized to 19.04% by the application of green manure @ 10 t ha-1. Grain yield reduction was also minimized from 37.08% to 27% at the same level of salinity by the application of gypsum@ 1 g kg-1soil. Similar amelioration effect was also observed in case of straw yield. The amelioration was improved further when both green manure and gypsum were applied. Without any salinity stress grain yield was 4.49 t ha-1, which was reduced to 2.61 t ha-1 (41.87% reduction) when the crop was stressed with 50 mM salinity. Application of green manure @ 10 t ha-1 and gypsum @ 1 g kg-1 soil improved grain yield to 4.00 t ha-1, where yield reduction was just 10.91%. Similar improvement was also found in straw yield. The results of the study conclude that salinity stress in transplant Aman rice var. BRRI dhan40 could successfully be ameliorated through application of green manure@ 10 t ha-1 and gypsum@ 1 g kg-1 soil.Bangladesh Agron. J. 2014, 17(1): 1-10


2018 ◽  
Vol 176 ◽  
pp. 10-17 ◽  
Author(s):  
Lifang Wang ◽  
Jutao Sun ◽  
Zhengbin Zhang ◽  
Ping Xu ◽  
Zhouping Shangguan

2020 ◽  
Vol 7 (01) ◽  
pp. 22-27
Author(s):  
Nalwida Rozen ◽  
Gusnidar Gusnidar ◽  
Nurhajati Hakim

A series of on-farm fi eld experiments were conducted in two locations in Padang, Koto Panjang and Koto Tingga, West Sumatera, Indonesia in 2015. The purpose of the experiment was to establish the formula of organic fertilizer derived from Tithonia supplied with micro nutrients, Zn and Mn, on rice. The experiments were conducted using completely-randomized block design with six treatments and three replications. The treatments were P = Tithonia Organic Fertilizer Plus (TOFP) + 3.0 kg Mn.ha-1, Q = TOFP + 3.0 kg Mn.ha-1+ 3.0 kg Zn.ha-1, R = TOFP + 4.5 kg Mn.ha-1 + 6 kg Zn.ha-1, S= TOFP + 4.5 kg Mn.ha-1+ 9 kg Zn.ha-1, T = TOFP only, U = 100% chemical fertilizer only. Treatment with micro nutrients as addition to TOFP (TOFP+ 3.0 kg Mn.ha-1 and TOFP+ 3.0 kg Mn.ha-1+3.0 kg Zn.ha-1) increased rice grain yield by 80 g per clump.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 780
Author(s):  
Muhammad Qaswar ◽  
Jing Huang ◽  
Waqas Ahmed ◽  
Dongchu Li ◽  
Shujun Liu ◽  
...  

Cultivation of green manure (GM) crops in intensive cropping systems is important for enhancing crop productivity through soil quality improvement. We investigated yield sustainability, nutrient stocks, nutrient balances and enzyme activities affected by different long-term (1982–2016) green manure rotations in acidic paddy soil in a double-rice cropping system. We selected four treatments from a long-term experiment, including (1) rice-rice-winter fallow as a control treatment (R-R-F), (2) rice-rice-milkvetch (R-R-M), (3) rice-rice-rapeseed (R-R-R), and (4) rice-rice-ryegrass (R-R-G). The results showed that different GM rotations increased grain yield and the sustainable yield index compared with those of the R-R-F treatment. Compared with those of R-R-F, the average grain yield of early rice in R-R-M, R-R-R, and R-R-G increased by 45%, 29%, and 27%, respectively and that of late rice increased by 46%, 28%, and 26%, respectively. Over the years, grain yield increased in all treatments except R-R-F. Green manure also improved the soil chemical properties (SOM and total and available N and P), except soil pH, compared to those of the control treatment. During the 1983–1990 cultivation period, the soil pH of the R-R-M treatment was lower than that of the R-R-F treatment. The addition of green manure did not mitigate the soil acidification caused by the use of inorganic fertilizers. The soil organic matter (SOM), total nitrogen (TN) and total phosphorus (TP) contents and stocks of C, N and P increased over the years. Furthermore, GM significantly increased phosphatase and urease activities and decreased the apparent N and P balances compared with those in the winter fallow treatment. Variance partitioning analysis revealed that soil properties, cropping systems, and climatic factors significantly influenced annual grain yield. Aggregated boosted tree (ABT) analysis quantified the relative influences of the different soil properties on annual grain yield and showed that the relative influences of TN content, SOM, pH, and TP content on annual crop yield were 27.8%, 25.7%, 22.9%, and 20.7%, respectively. In conclusion, GM rotation is beneficial for sustaining high crop yields by improving soil biochemical properties and reducing N and P balances in acidic soil under double- rice cropping systems.


Sign in / Sign up

Export Citation Format

Share Document