scholarly journals Long-Term Green Manure Rotations Improve Soil Biochemical Properties, Yield Sustainability and Nutrient Balances in Acidic Paddy Soil under a Rice-Based Cropping System

Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 780
Author(s):  
Muhammad Qaswar ◽  
Jing Huang ◽  
Waqas Ahmed ◽  
Dongchu Li ◽  
Shujun Liu ◽  
...  

Cultivation of green manure (GM) crops in intensive cropping systems is important for enhancing crop productivity through soil quality improvement. We investigated yield sustainability, nutrient stocks, nutrient balances and enzyme activities affected by different long-term (1982–2016) green manure rotations in acidic paddy soil in a double-rice cropping system. We selected four treatments from a long-term experiment, including (1) rice-rice-winter fallow as a control treatment (R-R-F), (2) rice-rice-milkvetch (R-R-M), (3) rice-rice-rapeseed (R-R-R), and (4) rice-rice-ryegrass (R-R-G). The results showed that different GM rotations increased grain yield and the sustainable yield index compared with those of the R-R-F treatment. Compared with those of R-R-F, the average grain yield of early rice in R-R-M, R-R-R, and R-R-G increased by 45%, 29%, and 27%, respectively and that of late rice increased by 46%, 28%, and 26%, respectively. Over the years, grain yield increased in all treatments except R-R-F. Green manure also improved the soil chemical properties (SOM and total and available N and P), except soil pH, compared to those of the control treatment. During the 1983–1990 cultivation period, the soil pH of the R-R-M treatment was lower than that of the R-R-F treatment. The addition of green manure did not mitigate the soil acidification caused by the use of inorganic fertilizers. The soil organic matter (SOM), total nitrogen (TN) and total phosphorus (TP) contents and stocks of C, N and P increased over the years. Furthermore, GM significantly increased phosphatase and urease activities and decreased the apparent N and P balances compared with those in the winter fallow treatment. Variance partitioning analysis revealed that soil properties, cropping systems, and climatic factors significantly influenced annual grain yield. Aggregated boosted tree (ABT) analysis quantified the relative influences of the different soil properties on annual grain yield and showed that the relative influences of TN content, SOM, pH, and TP content on annual crop yield were 27.8%, 25.7%, 22.9%, and 20.7%, respectively. In conclusion, GM rotation is beneficial for sustaining high crop yields by improving soil biochemical properties and reducing N and P balances in acidic soil under double- rice cropping systems.

2012 ◽  
Vol 11 (4) ◽  
pp. 655-664 ◽  
Author(s):  
Zeng-ping YANG ◽  
Ming-gang XU ◽  
Sheng-xian ZHENG ◽  
Jun NIE ◽  
Ju-sheng GAO ◽  
...  

2020 ◽  
Vol 66 (No. 1) ◽  
pp. 22-32
Author(s):  
Qingyin Shang ◽  
Xiuxia Yang ◽  
Hui Yan ◽  
Xiaohui Wang

Soil fertility is fundamental in determining crop productivity and sustainability in farming systems. A long-term fertiliser experiment in Chinese double rice-cropping systems initiated in 2011 was used in this study to gain an insight into a complete estimating of soil fertility. The six fertiliser treatments included mineral fertiliser (NP, NK, and NPK), combined NPK with farmyard manure (NPKM) or crop straw (NPKS), and no fertiliser application as a control. Results showed that grain yield averaged 5.5–13.0 t/ha/year, and significant increasing trends were observed in the phosphorus-applied plots (NP, NPK, NPKM, and NPKS), but the treatments without phosphorus applied (control and NK) resulted in declining trends in both early- and late-rice yields. After long-term rice cultivation, the contents of total and available phosphorus significantly declined in phosphorus-deficient plots compared to other treatments. Regression analysis showed that the improvement in grain yields was positively correlated with the increased soil fertility over treatments. Relative to the NPK treatment, the NPKM treatment greatly enhanced soil fertility from 0.50 to 0.78, and particularly dramatically increased the content of available soil phosphorus. Therefore, the high grain yield and soil fertility can be simultaneously achieved by long-term balanced fertiliser applications in Chinese double rice-cropping systems.  


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 191
Author(s):  
Michele Andrea De Santis ◽  
Michele Rinaldi ◽  
Valeria Menga ◽  
Pasquale Codianni ◽  
Luigia Giuzio ◽  
...  

Chickpea is a key crop in sustainable cropping systems and for its nutritional value. Studies on agronomic and genetic influences on chickpea protein composition are missing. In order to obtain a deep insight into the genetic response of chickpeas to management in relation to agronomic and quality traits, a two-year field trial was carried out with eight chickpea genotypes under an organic and conventional cropping system. Protein composition was assessed by SDS-PAGE in relation to the main fractions (vicilin, convicilin, legumin, lectin, 2s-albumin). Crop response was highly influenced by year and presumably also by management, with a −50% decrease in grain yield under organic farming, mainly due to a reduction in seed number per m2. No effect of crop management was observed on protein content, despite significant differences in terms of protein composition. The ratio between the major globulins, 7s vicilin and 11s legumin, showed a negative relationship with grain yield and was found to be higher under organic farming. Among genotypes, black-seed Nero Senise was characterized by the highest productivity and water-holding capacity, associated with low lectin content. These findings highlight the importance of the choice of chickpea genotypes for cultivation under organic farming in relation to both agronomic performance and technological and health quality.


2019 ◽  
Vol 17 (1) ◽  
pp. 49-63
Author(s):  
K Pariyar ◽  
A Chaudhary ◽  
P Sapkota ◽  
S Sharma ◽  
CB Rana ◽  
...  

The effects of two tillage methods (zero tillage and conventional tillage), two residue managements (residue kept and residue removed) and two levels of cropping system (maize + soybean and sole maize) were studied over 3 years (2015-2017) at Dailekh district of Nepal. Arun-2 and Puja were the varieties of maize and soybean used respectively, followed by winter wheat. The results revealed that the maize + soybean system had significantly higher plant population and ear population (34.83 thousands ha-1 and 34.35 thousands ha-1, respectively), grains per row (37.1), ear length (16.6 cm) and 20.5% higher grain yield as compared to sole maize. The highest maize equivalent yield (7.92 t ha-1) was recorded in maize + soybean as compared to the lower grain yield equivalent (7.06 t ha-1) in sole maize. Zero tillage accounted relatively higher benefits (high net income and B:C ratio) as compared to conventional tillage. The residue kept plot resulted significantly higher B:C ratio (2.41) than the residue removed (2.11) and the maize + soybean recorded 82.5% greater B:C ratio compared to sole maize. Net annual income was significantly higher in zero tillage, residue kept and maize + soybean system (NRs. 223072.00, 222958.00 and 269016.00 ha-1 respectively). Such combinations are recommended for Dailekh district of Nepal to have profitable crop productivity. SAARC J. Agri., 17(1): 49-63 (2019)


2018 ◽  
Vol 64 (No. 4) ◽  
pp. 156-163
Author(s):  
Wang Dapeng ◽  
Zheng Liang ◽  
Gu Songdong ◽  
Shi Yuefeng ◽  
Liang Long ◽  
...  

Excessive nitrogen (N) and water input, which are threatening the sustainability of conventional agriculture in the North China Plain (NCP), can lead to serious leaching of nitrate-N (NO<sub>3</sub><sup>–</sup>-N). This study evaluates grain yield, N and water consumption, NO<sub>3</sub><sup>–</sup>-N accumulation and leaching in conventional and two optimized winter wheat-summer maize double-cropping systems and an organic alfalfa-winter wheat cropping system. The results showed that compared to the conventional cropping system, the optimized systems could reduce N, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching by 33, 35 and 67–74%, respectively, while producing nearly identical grain yields. In optimized systems, soil NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was about 80 kg N/ha most of the time. In the organic system, N input, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching was reduced even more (by 71, 43 and 92%, respectively, compared to the conventional system). However, grain yield also declined by 46%. In the organic system, NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was generally less than 30 kg N/ha. The optimized systems showed a considerable potential to reduce N and water consumption and NO<sub>3</sub><sup>–</sup>-N leaching while maintaining high grain yields, and thus should be considered for sustainable agricultural development in the NCP.  


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 609 ◽  
Author(s):  
Qaswar ◽  
Jing ◽  
Ahmed ◽  
Shujun ◽  
Dongchu ◽  
...  

A long-term field experiment was carried out (since 2008) for evaluating the effects of different substitution rates of inorganic nitrogen (N) fertilizer by green manure (GM) on yield stability and N balance under double rice cropping system. Treatments included, (1) N0 (no N fertilizer and no green manure); (2) N100 (recommended rate of N fertilizer and no green manure); (3) N100-M (recommended rate of N fertilizer and green manure); (4) N80-M (80% of recommended N fertilizer and green manure); (5) N60-M (60% of recommended N fertilizer and green manure); and (6) M (green manure without N fertilization). Results showed that, among all treatments, annual crop yield under N80-M treatment was highest. Crop yield did not show significant differences between N100-M and N80-M treatments. Substitution of different N fertilizer rates by GM reduced the yield variability index. Compared to the N0 treatment, yield variability index of early rice under N100-M, N80-M, and N60-M treatments was decreased by 11%, 26%, and 36%, respectively. Compared to the N0 treatment, yield variability index of late rice was decreased by 12%, 38%, 49%, 47%, and 24% under the N100, N100-M, N80-M, N60-M, and M treatments, respectively. During period of 2009–2013 and 2014–2018, nitrogen recovery efficiency (NRE) was highest under N80-M treatment and N balance was highest under N100 treatment. NRE of all treatments with GM was increased over the time from 2009–2013 to 2014–2018. All treatments with GM showed increasing trend of SOC over the years. Substitution of N fertilizer by GM also increased C inputs and soil C:N ratio compared to the N100 and N0 treatments. Boosted regression model indicated that C input, N uptake and AN were most influencing factors of crop yield. Thus, we concluded that N fertilization rates should be reduced by 20% under GM rotation to attain high yield stability of double rice cropping system through increasing NRE and C inputs.


2019 ◽  
Vol 33 (04) ◽  
pp. 578-585
Author(s):  
Shawn C. Beam ◽  
Mark J. VanGessel ◽  
Kurt M. Vollmer ◽  
Michael L. Flessner

AbstractGrape hyacinth is a perennial bulbous species in the Liliaceae. It is commonly grown as an ornamental plant, but it can spread into agricultural fields and become weedy, potentially interfering with harvest and fall-planted crops. There has been limited research on controlling grape hyacinth in cropping systems. Fall and spring applied field-research studies were conducted to determine grape hyacinth control with herbicides labeled for use in wheat or winter fallow before planting soybean. Among fall-applied herbicides, paraquat resulted in the greatest initial grape hyacinth control (90% to 100%). Grape hyacinth control, 16 months after application (MAA), was variable, but the top-performing treatments were glyphosate and metsulfuron plus paraquat, resulting in 65% and 50% control, respectively. After spring applications, grape hyacinth control in November (7 MAA) was variable, but top-performing treatments were glyphosate and metsulfuron, which resulted in at least 26% control. Spring-applied paraquat, carfentrazone, metsulfuron, and sulfosulfuron resulted in 73%, 68%, 69%, and 60% reductions in grape hyacinth bulb counts, compared with the nontreated control 7 MAA, and were the top-performing treatments. Despite product-label prohibitions on rotation to soybeans, no soybean yield reductions were observed from any treatment in either study. Single applications of certain herbicides in the fall or spring can result in good control (&gt;80%) of grape hyacinth initially, but long-term control is poor, and additional research is required.


2019 ◽  
Vol 11 (10) ◽  
pp. 2979 ◽  
Author(s):  
Chaoqiang Jiang ◽  
Xuexiang Ren ◽  
Huoyan Wang ◽  
Dianjun Lu ◽  
Chaolong Zu ◽  
...  

Improvement in fertilization methods, including the optimal matching of nutrient supply and root nutrient absorption by applying nitrogen (N) in the root zone of crop, is necessary to improve N use efficiency (NUE), maintain high stable yield cultivation of maize, and contribute toward future environmental protection. The current practice of split surface broadcasting (SSB) of N is labor-intensive and the surface broadcasting causes a large amount of N to leach into the environment, yet it does not substantially increase maize yield. Root zone fertilization (RZF) has been identified as an efficient way to solve such problems. However, information on the appropriate amount of N fertilizer under RZF for summer maize remains limited. Therefore, in this study, a two-year consecutive field experiment was conducted during 2015–2016 in Anhui province, China, to investigate the effect of N rate and application method on grain yield, nutrient uptake, and NUE of summer maize. The method chosen is not only important to increase grain yield but also critical for reducing N rate and potential loss in the maize cropping system. The experiment comprised six N rates (90, 135, 180, 225, 270, and 360 kg N hm−2) and two N application methods in both 2015 and 2016. The two N application methods included SSB and one-time RZF. Results showed that grain yield of summer maize increased first and then decreased with the increase of N rate; however, when the N rate increased to 270 kg hm−2, the grain yield increased slowly or even decreased. Compared with SSB, RZF increased grain yield by 4%, and the effect of N on grain yield was mainly related to the number of kernels per ear and 1000-seed weight. One-time RZF increased N apparent recovery efficiency by 18% (7.2 percentage points) compared with SSB and also improved the N agronomic efficiency, N physiological efficiency, and N partial factor productivity. In the comprehensive consideration of yield target, NUE, and soil N balance, the optimal N rate for summer maize in the vertisol soil of Anhui province was 180–225 kg hm−2 for one-time RZF, which reduced N fertilizer by 14% compared with the SSB. Overall, one-time RZF has great potential for green and sustainable agriculture, and thus fertilization machines are worthy of development and application in maize cropping systems.


2014 ◽  
Vol 30 (5) ◽  
pp. 461-472 ◽  
Author(s):  
Kristy Borrelli ◽  
Richard Koenig ◽  
Ian Burke ◽  
Robert S. Gallagher ◽  
Dennis Pittmann ◽  
...  

AbstractOrganic wheat and small grains are produced on relatively few acres in the inland Pacific Northwest. The objective of this study was to examine how the nitrogen (N) dynamics of cropping systems (CSs) produced during the transition phase impacted organic wheat yield and protein levels in the first 2 years of certified organic production. Certified organic spring wheat (SW) was produced in 2006 and winter wheat (WW) in 2007 following nine, 3-year transitional cereal, small grain and legume-intensive CSs. SW and WW following perennial alfalfa + oat/pea forage or 3 years of legume green manure tended to be more productive than wheat that followed systems that contained a small grain crop for at least 1 year during the transition. In addition to increasing soil N, well-established stands of forage and green manure provided adequate cover to reduce weed establishment prior to organic production. Effective weed control strategies were as important as increasing soil inorganic N levels for improving organic wheat production. Choice of crop type, cultivar and rotation is important in organic wheat systems and in this study, WW had better stand establishment, competition with weeds and higher overall yield than SW and would be a better-suited class of wheat for organic production in situations where spring weeds are the dominant problem. Regardless of CS or crop type, supplemental soil fertility (primarily N) during the organic production phase will be necessary to maintain high soil N levels and wheat yields in these dryland systems.


Sign in / Sign up

Export Citation Format

Share Document