scholarly journals Bioinformatic analysis and functional characterization of CFEM proteins in Setosphaeria turcica

2021 ◽  
Vol 20 (9) ◽  
pp. 2438-2449
Author(s):  
Jian-xia WANG ◽  
Feng LONG ◽  
Hang ZHU ◽  
Yan ZHANG ◽  
Jian-ying WU ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Monika Dzieciatkowska ◽  
Guihong Qi ◽  
Jinsam You ◽  
Kerry G. Bemis ◽  
Heather Sahm ◽  
...  

Cerebrospinal fluid (CSF) has been used for biomarker discovery of neurodegenerative diseases in humans since biological changes in the brain can be seen in this biofluid. Inactivation of A-T-mutated protein (ATM), a multifunctional protein kinase, is responsible for A-T, yet biochemical studies have not succeeded in conclusively identifying the molecular mechanism(s) underlying the neurodegeneration seen in A-T patients or the proteins that can be used as biomarkers for neurologic assessment of A-T or as potential therapeutic targets. In this study, we applied a high-throughput LC/MS-based label-free protein quantification technology to quantitatively characterize the proteins in CSF samples in order to identify differentially expressed proteins that can serve as potential biomarker candidates for A-T. Among 204 identified CSF proteins with high peptide-identification confidence, thirteen showed significant protein expression changes. Bioinformatic analysis revealed that these 13 proteins are either involved in neurodegenerative disorders or cancer. Future molecular and functional characterization of these proteins would provide more insights into the potential therapeutic targets for the treatment of A-T and the biomarkers that can be used to monitor or predict A-T disease progression. Clinical validation studies are required before any of these proteins can be developed into clinically useful biomarkers.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Olga Tsypik ◽  
Roman Makitrynskyy ◽  
Agnieszka Bera ◽  
Lijiang Song ◽  
Wolfgang Wohlleben ◽  
...  

Here we report functional characterization of the Streptomyces coelicolor M145 gene SCO1678, which encodes a GntR-like regulator of the FadR subfamily. Bioinformatic analysis suggested that SCO1678 is part of putative operon (gnt) involved in gluconate metabolism. Combining the results of SCO1678 knockout, transcriptional analysis of gnt operon, and Sco1678 protein-DNA electromobility shift assays, we established that Sco1678 protein controls the gluconate operon. It does so via repression of its transcription from a single promoter located between genes SCO1678 and SCO1679. The knockout also influenced, in a medium-dependent manner, the production of secondary metabolites by S. coelicolor. In comparison to the wild type, on gluconate-containing minimal medium, the SCO1678 mutant produced much less actinorhodin and accumulated a yellow-colored pigment, likely to be the cryptic polyketide coelimycin. Possible links between gluconate metabolism and antibiotic production are discussed.


2020 ◽  
Vol 19 (2) ◽  
pp. 541-550
Author(s):  
An-dong GONG ◽  
Zhong-ying JING ◽  
Kai ZHANG ◽  
Qing-qun TAN ◽  
Guo-liang WANG ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 206
Author(s):  
Alessandro Mattè ◽  
Enrica Federti ◽  
Elena Tibaldi ◽  
Maria Luisa Di Paolo ◽  
Giovanni Bisello ◽  
...  

Peroxiredoxin-2 (Prx2) is the third most abundant cytoplasmic protein in red blood cells. Prx2 belongs to a well-known family of antioxidants, the peroxiredoxins (Prxs), that are widely expressed in mammalian cells. Prx2 is a typical, homodimeric, 2-Cys Prx that uses two cysteine residues to accomplish the task of detoxifying a vast range of organic peroxides, H2O2, and peroxynitrite. Although progress has been made on functional characterization of Prx2, much still remains to be investigated on Prx2 post-translational changes. Here, we first show that Prx2 is Tyrosine (Tyr) phosphorylated by Syk in red cells exposed to oxidation induced by diamide. We identified Tyr-193 in both recombinant Prx2 and native Prx2 from red cells as a specific target of Syk. Bioinformatic analysis suggests that phosphorylation of Tyr-193 allows Prx2 conformational change that is more favorable for its peroxidase activity. Indeed, Syk-induced Tyr phosphorylation of Prx2 enhances in vitro Prx2 activity, but also contributes to Prx2 translocation to the membrane of red cells exposed to diamide. The biologic importance of Tyr-193 phospho-Prx2 is further supported by data on red cells from a mouse model of humanized sickle cell disease (SCD). SCD is globally distributed, hereditary red cell disorder, characterized by severe red cell oxidation due to the pathologic sickle hemoglobin. SCD red cells show Tyr-phosphorylated Prx2 bound to the membrane and increased Prx2 activity when compared to healthy erythrocytes. Collectively, our data highlight the novel link between redox related signaling and Prx2 function in normal and diseased red cells.


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


1998 ◽  
Vol 79 (01) ◽  
pp. 177-185 ◽  
Author(s):  
Ashia Siddiqua ◽  
Michael Wilkinson ◽  
Vijay Kakkar ◽  
Yatin Patel ◽  
Salman Rahman ◽  
...  

SummaryWe report the characterization of a monoclonal antibody (MAb) PM6/13 which recognises glycoprotein IIIa (GPIIIa) on platelet membranes and in functional studies inhibits platelet aggregation induced by all agonists examined. In platelet-rich plasma, inhibition of aggregation induced by ADP or low concentrations of collagen was accompanied by inhibition of 5-hydroxytryptamine secretion. EC50 values were 10 and 9 [H9262]g/ml antibody against ADP and collagen induced responses respectively. In washed platelets treated with the cyclooxygenase inhibitor, indomethacin, PM6/13 inhibited platelet aggregation induced by thrombin (0.2 U/ml), collagen (10 [H9262]g/ml) and U46619 (3 [H9262]M) with EC50 = 4, 8 and 4 [H9262]g/ml respectively, without affecting [14C]5-hydroxytryptamine secretion or [3H]arachidonate release in appropriately labelled cells. Studies in Fura 2-labelled platelets revealed that elevation of intracellular calcium by ADP, thrombin or U46619 was unaffected by PM6/13 suggesting that the epitope recognised by the antibody did not influence Ca2+ regulation. In agreement with the results from the platelet aggregation studies, PM6/13 was found to potently inhibit binding of 125I-fibrinogen to ADP activated platelets. Binding of this ligand was also inhibited by two other MAbs tested, namely SZ-21 (also to GPIIIa) and PM6/248 (to the GPIIb-IIIa complex). However when tested against binding of 125I-fibronectin to thrombin stimulated platelets, PM6/13 was ineffective in contrast with SZ-21 and PM6/248, that were both potent inhibitors. This suggested that the epitopes recognised by PM6/13 and SZ-21 on GPIIIa were distinct. Studies employing proteolytic dissection of 125I-labelled GPIIIa by trypsin followed by immunoprecipitation with PM6/13 and analysis by SDS-PAGE, revealed the presence of four fragments at 70, 55, 30 and 28 kDa. PM6/13 did not recognize any protein bands on Western blots performed under reducing conditions. However Western blotting analysis with PM6/13 under non-reducing conditions revealed strong detection of the parent GP IIIa molecule, of trypsin treated samples revealed recognition of an 80 kDa fragment at 1 min, faint recognition of a 60 kDa fragment at 60 min and no recognition of any product at 18 h treatment. Under similar conditions, SZ-21 recognized fragments at 80, 75 and 55 kDa with the 55kDa species persisting even after 18 h trypsin treatment. These studies confirm the epitopes recognised by PM6/13 and SZ-21 to be distinct and that PM6/13 represents a useful tool to differentiate the characteristics of fibrinogen and fibronectin binding to the GPIIb-IIIa complex on activated platelets.


Sign in / Sign up

Export Citation Format

Share Document