scholarly journals In vitro antibacterial activity of Hibiscus rosa–sinensis flower extract against human pathogens

2012 ◽  
Vol 2 (5) ◽  
pp. 399-403 ◽  
Author(s):  
P Ruban ◽  
K Gajalakshmi
2018 ◽  
Vol 10 (5) ◽  
pp. 209
Author(s):  
Shyla M. Haqq ◽  
Himanshu Pandey ◽  
Manju Gerard ◽  
Amit Chattree

Objective: In the present research work silver nanoparticles were synthesized using the flower extract of Chrysanthemum coronarium and their in-vitro antibacterial activity was evaluated against both the gram-positive S. aureus and gram-negative bacteria E. coli. The flower extract acted both as a reducing as well as a capping agent.Methods: Silver nanoparticles were verified using various spectroanalytical techniques such as visible ultraviolet spectroscopy, zeta potential, fourier transform infrared spectroscopy and particle size analyser. The antibacterial activity was evaluated against both the gram-positive bacteria S. aureus and gram-negative bacteria E. coli using the agar well diffusion method.Results: The silver nanoparticles synthesized were confirmed by the visual colour change. The ultraviolet, visible spectroscopy showed a surface plasmon resonance at 430 nm. Zetapotential was found to be around-15.6mV where the negative value indicated that the synthesized silver nanoparticles are stable. Fourier transform infrared spectroscopy showed the functional groups responsible for the stabilization of the nanoparticles. Particle size analyser showed that the size of the nanoparticles ranged from 5-50 nm. The antibacterial activity of the silver nanoparticles which was performed against S. aureus and E. coli showed good inhibition against both the bacteria. Better antibacterial activity was found for E. coli in comparison to S. aureus as the zone of inhibition for E. coli was found to be at 12 mm at 50ug/ml whereas the zone of inhibition against S. aureus was found to be at 10 mm.Conclusion: The silver nanoparticles were successfully synthesized using a green approach and can be used as a potential resource for therapeutic purpose.


2016 ◽  
Vol 5 (04) ◽  
pp. 4512
Author(s):  
Jackie K. Obey ◽  
Anthoney Swamy T* ◽  
Lasiti Timothy ◽  
Makani Rachel

The determination of the antibacterial activity (zone of inhibition) and minimum inhibitory concentration of medicinal plants a crucial step in drug development. In this study, the antibacterial activity and minimum inhibitory concentration of the ethanol extract of Myrsine africana were determined for Escherichia coli, Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The zones of inhibition (mm±S.E) of 500mg/ml of M. africana ethanol extract were 22.00± 0.00 for E. coli,20.33 ±0.33 for B. cereus,25.00± 0.00 for S. epidermidis and 18. 17±0.17 for S. pneumoniae. The minimum inhibitory concentration(MIC) is the minimum dose required to inhibit growth a microorganism. Upon further double dilution of the 500mg/ml of M. africana extract, MIC was obtained for each organism. The MIC for E. coli, B. cereus, S. epidermidis and S. pneumoniae were 7.81mg/ml, 7.81mg/ml, 15.63mg/ml and 15.63mg/ml respectively. Crude extracts are considered active when they inhibit microorganisms with zones of inhibition of 8mm and above. Therefore, this study has shown that the ethanol extract of M. africana can control the growth of the four organisms tested.


Sign in / Sign up

Export Citation Format

Share Document