scholarly journals Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus

2013 ◽  
Vol 3 (6) ◽  
pp. 443-448 ◽  
Author(s):  
Amrouche Abdelillah ◽  
Benmehdi Houcine ◽  
Dalile Halima ◽  
Chabane sari Meriel ◽  
Zaaboub Imane ◽  
...  
2017 ◽  
Vol 63 (4) ◽  
pp. 26-33 ◽  
Author(s):  
Grażyna Silska

Summary Introduction: Polish oilseed and flaxseed collection is a source of genotypes containing very high amounts of α-linolenic acid. Objective: The objective of the study is to test the seeds for the fat content and fatty acids composition in the oil pressed from the 9 tested accessions of flax (Linum usitatissimum L.). Our goal is to promote the Polish flax collection, which seeds are unique as one of the richest sources of α-linolenic acid. Methods: Assays to determine the content of fat and fatty acids composition in linseed oil were performed at the IHAR-PIB Biochemical Laboratory in Poznań. The fat content was determined by infrared analysis (calibration performed on the basis of seed sample at IHAR-PIB in Poznań) by means of a NIRS 6500 spectrophotometer with a reflection detector within the range of 400-2500 nm. The composition of fatty acids was determined by means of a method proposed by Byczyńska and Krzymański (1969), based on gas chromatography of methyl esters of fatty acids contained in linseed oil. The following varieties of flax were investigated: Tabare (INF00111), Szegedi 30 (INF00427), Olin (INF 00444), Redwood 65 (INF00523), Dufferin (INF00540), AC Mc Duff (INF00648), Alfonso Inta (INF00683), Olinette (INF00687), Royale (INF00689). Results: The content of α-linolenic acid (ALA, C18:3) in evaluated genotypes of flax ranged from 48.9 (Royale) to 59.9% (Alfonso Inta). Content of linoleic acid (LA, C18:2) in evaluated genotypes of flax ranged from 12.4 (Tabare) to 17.1% (AC Mc Duff). The content of oleic acid (OA, C18:1) of 9 accession of flax ranged from 17.1 (Alfonso Inta) to 26.7% (Royale). The content of stearic acid in evaluated genotypes of flax ranged from 2.3 (Alfonso Inta) to 5.0% (Tabare, Szegedi 30) and the content of palmitic acid ranged from 4.7 (Dufferin) to 6.0% (Olin). The content of fat ranged from 42.7 (Olin) to 52.0% (AC Mc Duff). The fatty acid ratio n-6/n-3 ranged from 0.23/1 (Tabare) to 0.32/1 (AC Mc Duff).


Fuel ◽  
2019 ◽  
Vol 244 ◽  
pp. 569-579 ◽  
Author(s):  
Alexis M. Escorsim ◽  
Fabiane Hamerski ◽  
Luiz P. Ramos ◽  
Marcos L. Corazza ◽  
Claudiney S. Cordeiro

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 842 ◽  
Author(s):  
Igor Jerković ◽  
Marina Kranjac ◽  
Zvonimir Marijanović ◽  
Bojan Šarkanj ◽  
Ana-Marija Cikoš ◽  
...  

The focus of present study is on Codium bursa collected from the Adriatic Sea. C. bursa volatiles were identified by gas chromatography and mass spectrometry (GC-FID; GC-MS) after headspace solid-phase microextraction (HS-SPME), hydrodistillation (HD), and supercritical CO2 extraction (SC-CO2). The headspace composition of dried (HS-D) and fresh (HS-F) C. bursa was remarkably different. Dimethyl sulfide, the major HS-F compound was present in HS-D only as a minor constituent and heptadecane percentage was raised in HS-D. The distillate of fresh C. bursa contained heptadecane and docosane among the major compounds. After air-drying, a significantly different composition of the volatile oil was obtained with (E)-phytol as the predominant compound. It was also found in SC-CO2 extract of freeze-dried C. bursa (FD-CB) as the major constituent. Loliolide (3.51%) was only identified in SC-CO2 extract. Fatty acids were determined from FD-CB after derivatisation as methyl esters by GC-FID. The most dominant acids were palmitic (25.4%), oleic (36.5%), linoleic (11.6%), and stearic (9.0%). FD-CB H2O extract exhibited better antifungal effects against Fusarium spp., while dimethyl sulfoxide (DMSO) extract was better for the inhibition of Penicillium expansum, Aspergillus flavus, and Rhizophus spp. The extracts showed relatively good antifungal activity, especially against P. expansum (for DMSO extract MIC50 was at 50 µg/mL).


2014 ◽  
Vol 5 (2) ◽  
pp. 50-56
Author(s):  
D Chabane Sari ◽  
A Amrouche ◽  
H Benmehdi ◽  
H Malainine ◽  
M Chabane Sari ◽  
...  

Author(s):  
Vijaya Lakshmi Ch ◽  
Uday Bhaskar R.V.S ◽  
Viswanath Kotra ◽  
Satyavathi Bankupalli

Biodiesel from clean oils is comparatively easier than production from crude and non-edible oils. To achieve maximum yield of biodiesel, a two stage process is adopted in which non-edible oils are used as feed-stock: an acid catalyzed esterification of free fatty acids followed by base catalyzed transesterification. Presence of water formed during esterification reaction is detrimental to a viable transesterification process. In the present work, an alternate method for removal of water by in situ hydrolysis reaction of methyl acetate is introduced. The dehydration using methyl acetate during esterification has yielded good results as the soap formed during transesterification was minimal. The results indicated high conversion of triglycerides to methyl ester for lower oil to methanol ratio and at a lower temperature. For 1:3 molar ratio of oil to methanol, the conversion obtained was less than 90 percent and is equivalent to conversions with higher alcohol ratios during esterification in the absence of methyl acetate. These results are indicative of the fact that use of methyl acetate reduces the alcohol to oil ratio without affecting the conversions. Moreover, higher conversions are possible at lower temperatures in the presence of methyl acetate. It is further observed that the oils that are subjected to free fatty acid conversions in the presence of methyl acetate record very little soap formation during the transesterification reactions, thereby resulting in higher grade of biodiesel.


2012 ◽  
Vol 433-434 ◽  
pp. 12-17 ◽  
Author(s):  
Peng-Lim Boey ◽  
Shangeetha Ganesan ◽  
Gaanty Pragas Maniam ◽  
Melati Khairuddean ◽  
Siew-Ee Lee

Sign in / Sign up

Export Citation Format

Share Document