scholarly journals Chemical Diversity of Codium bursa (Olivi) C. Agardh Headspace Compounds, Volatiles, Fatty Acids and Insight into Its Antifungal Activity

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 842 ◽  
Author(s):  
Igor Jerković ◽  
Marina Kranjac ◽  
Zvonimir Marijanović ◽  
Bojan Šarkanj ◽  
Ana-Marija Cikoš ◽  
...  

The focus of present study is on Codium bursa collected from the Adriatic Sea. C. bursa volatiles were identified by gas chromatography and mass spectrometry (GC-FID; GC-MS) after headspace solid-phase microextraction (HS-SPME), hydrodistillation (HD), and supercritical CO2 extraction (SC-CO2). The headspace composition of dried (HS-D) and fresh (HS-F) C. bursa was remarkably different. Dimethyl sulfide, the major HS-F compound was present in HS-D only as a minor constituent and heptadecane percentage was raised in HS-D. The distillate of fresh C. bursa contained heptadecane and docosane among the major compounds. After air-drying, a significantly different composition of the volatile oil was obtained with (E)-phytol as the predominant compound. It was also found in SC-CO2 extract of freeze-dried C. bursa (FD-CB) as the major constituent. Loliolide (3.51%) was only identified in SC-CO2 extract. Fatty acids were determined from FD-CB after derivatisation as methyl esters by GC-FID. The most dominant acids were palmitic (25.4%), oleic (36.5%), linoleic (11.6%), and stearic (9.0%). FD-CB H2O extract exhibited better antifungal effects against Fusarium spp., while dimethyl sulfoxide (DMSO) extract was better for the inhibition of Penicillium expansum, Aspergillus flavus, and Rhizophus spp. The extracts showed relatively good antifungal activity, especially against P. expansum (for DMSO extract MIC50 was at 50 µg/mL).

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 495 ◽  
Author(s):  
Igor Jerković ◽  
Marina Kranjac ◽  
Zvonimir Marijanović ◽  
Marin Roje ◽  
Stela Jokić

Two selected brown algae (Taonia atomaria and Padina pavonica from the family Dictyotaceae, order Dictyotales) growing in the same area (island Vis, central Adriatic Sea) were collected at the same time. Their phytochemical composition of the headspace volatile organic compounds (HS-VOCs; first time report) was determined by headspace solid-phase microextraction (HS-SPME). Hydrodistillation was applied for the isolation of their volatile oils (first report on T. atomaria volatile oil). The isolates were analyzed by gas chromatography (GC-FID) and mass spectrometry (GC-MS). The headspace and oil composition of T. atomaria were quite similar (containing germacrene D, epi-bicyclosesquiphellandrene, β-cubebene and gleenol as the major compounds). However, P. pavonica headspace and oil composition differed significantly (dimethyl sulfide, octan-1-ol and octanal dominated in the headspace, while the oil contained mainly higher aliphatic alcohols, trans-phytol and pachydictol A). Performed research contributes to the knowledge of the algae chemical biodiversity and reports an array of different compounds (mainly sesquiterpenes, diterpenes and aliphatic compounds); many of them were identified in both algae for the first time. Identified VOCs with distinctive chemical structures could be useful for taxonomic studies of related algae.


2014 ◽  
Vol 5 (2) ◽  
pp. 50-56
Author(s):  
D Chabane Sari ◽  
A Amrouche ◽  
H Benmehdi ◽  
H Malainine ◽  
M Chabane Sari ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Alexander M. Wathne ◽  
Hanne Devle ◽  
Carl Fredrik Naess-Andresen ◽  
Dag Ekeberg

Fatty acid (FA) profiles of the species Tettigonia viridissima, Chorthippus biguttulus, and Chorthippus brunneus were determined and quantitated. Extracted lipids were derivatized into FA methyl esters (FAMEs) prior to analysis by GC-MS. A total of 37 different FAs were identified in T. viridissima, yielding a total FA content of 10.4 g/100 g of dry matter. The contents of saturated FAs, monounsaturated FAs, and polyunsaturated FAs were 31.1, 35.9, and 33.0%, respectively. Lipids from T. viridissima were also fractioned into neutral lipids, free fatty acids, and polar lipids by offline solid phase extraction. For C. brunneus and C. biguttulus, 33 FAs were identified, yielding a total FA content of 6.14 g/100 g of dry matter. SFAs, MUFAs, and PUFAs, respectively, constituted 32.7, 25.1, and 42.1% of the total FA content. The contents of MUFAs, PUFAs, n-3 FAs, and n-6 FAs of each species, and the n-6/n-3 ratio, were subsequently discussed.


Author(s):  
J. Fernandez ◽  
V. Hariram ◽  
S. Seralathan ◽  
S.A. Harikrishnan ◽  
T. Micha Premkumar

Biodiesel synthesis from the pongamia oil seed and its characterization is elaborated in this paper. A double stage transesterification i.e. acid catalysed transesterification and base catalysed esterification are adopted to reduce the free fatty acids content and conversion of triglycerides into methyl esters. In this process, H2SO4, NaOH and methanol are used at the methanol/oil molar ratio of 7:1. By this process, 95% of pongamia biodiesel is obtained. The physiochemical properties like calorific value, Cetane number, density, kinematic viscosity, flash point, fire point etc. are analysed and it is found to be within the ASTM standards. GC-MS analysis indicated the existence of 14 prominent fatty acids with oleic acid as the major constituent. 13C and 1H NMR results supported the GC-MS data and it also confirmed the conversion efficiency of converting the vegetable oil into PBD as 87.23%. The shifting and appearance of major peaks in the FT-IR spectrum confirmed the formation of FAMEs from the triglycerides.


2004 ◽  
Vol 142 (1) ◽  
pp. 71-78 ◽  
Author(s):  
H. A. M. ALI ◽  
R. W. MAYES ◽  
C. S. LAMB ◽  
B. L. HECTOR ◽  
A. K. VERMA ◽  
...  

Previous investigations have shown that the long-chain fatty alcohols and long-chain fatty acids of plant waxes have potential as diet composition markers. This study was conducted to measure faecal recoveries of long-chain fatty alcohols (C20–C30) and long-chain fatty acids (C20–C32) in sheep fed mixed diets. Methodology for quantitative analysis of these compounds in feed and faeces is also presented. The method was an extension of the original n-alkane method of Mayes et al. (1986) in which separate hydrocarbon (n-alkanes, n-alkenes and branched-chain alkanes), alcohol (free+esterified) and acid (free+esterified) fractions could be obtained from a single sample. A fraction containing alcohols and sterols was eluted from the silica gel column after removal of the hydrocarbons. Sterols were removed from alcohols using aminopropyl solid-phase extraction columns. Alcohols were converted to their trimethylsilyl (TMS) ethers and run on a gas chromatograph (GC). Acids were extracted from the aqueous phase of saponification products after removal of hydrocarbons, alcohols and sterols, purified through silica gel columns and were converted into their methyl esters (FAMES) prior to analysis on a GC. Tests were carried out to evaluate the reproducibility of the results obtained from the analytical method developed for quantifying alcohols and acids. Twelve sheep, in metabolism crates, were offered (0·8 kg DM/animal/day) four different mixtures of hill grass (Agrostis capillaris), birch (Betula pendula) leaves and current season's growth of heather (Calluna vulgaris) and bilberry (Vaccinium myrtillus) for 17 days. Total daily faeces and feed refusals collections were carried out over the last 7 days. Faeces collections were bulked for each animal. Representative samples of feed, refusals and faeces were analysed for alcohols and acids using the described method. Faecal recoveries of alcohols and acids were calculated from the ratio of output and input of each marker. The results showed high, though incomplete, faecal recoveries for both alcohols and acids. Alcohols had consistently higher faecal recoveries compared with acids. Mean (±S.E.) faecal recovery values for alcohols C20, C22, C24, C26, C28 and C30 were 0·58±0·04, 0·67±0·01, 0·72±0·008, 0·80±0·007, 0·94±0·005 and 1·01±0·02, respectively, whereas those of acids C20, C22, C24, C26, C28, C30and C32 were 0·47±0·02, 0·57±0·02, 0·61±0·02, 0·77±0·017, 0·84±0·01, 0·79±0·015 and 0·84±0·013, respectively. Increasing chain-length had a significant effect (P<0·05) on the recoveries of both alcohols and acids (R2=0·808, 0·741, respectively). Different dietary plant mixtures had no effect (P>0·05) on the recoveries of alcohols and acids in faeces.


2000 ◽  
Vol 84 (5) ◽  
pp. 781-787 ◽  
Author(s):  
Graham C. Burdge ◽  
Paul Wright ◽  
Amanda E. Jones ◽  
Stephen A. Wootton

Efficient isolation of individual lipid classes is a critical step in the analysis of plasma and lipoprotein fatty acid compositions. Whilst good separations of total lipid extracts are possible by TLC, this method is time consuming and a major rate-limiting step when processing large numbers of specimens. A method for rapid separation of phosphatidylcholine (PC), non-esterified fatty acids (NEFA), cholesterol ester (CE) and triacylglycerol (TAG) from total plasma lipid extracts by solid-phase extraction (SPE) using aminopropyl silica columns has been developed and validated. Following initial separation of polar and neutral lipids, individual classes were isolated by application of solvents with increasing polarity. Recoveries for combined plasma extraction with chloroform–methanol and SPE were (%): PC 74·2 (SD 7·5), NEFA 73·6 (sd 8·3), CE 84·9 (sd 4·9), and TAG 86·8 (sd 4·9), which were significantly greater for TAG and NEFA than by TLC (P<0·001). Both GC–flame ionisation detector and GC-MS analysis of fatty acid methyl esters demonstrated that there was no cross-contamination between lipid classes. Measurements of repeatability of fatty acid composition for TAG, PC, CE and NEFA fractions showed similar CV for each fatty acid. The magnitude of the CV appeared to be related inversely to the fractional fatty acid concentration, and was greatest at concentrations of less than 1 g/100 g total fatty acids. There was no evidence of selective elution of individual fatty acid or CE species. In conclusion, this method represents an efficient, rapid alternative to TLC for isolation of these lipid classes from plasma.


Chemija ◽  
2018 ◽  
Vol 29 (1) ◽  
Author(s):  
Vilius Poškus ◽  
Vida Vičkačkaitė ◽  
Julita Dargytė ◽  
Gintautas Brimas

A home-made silica-based silver ion solid-phase extraction (Ag+-SPE) system for the fractionation and subsequent gas chromatographic analysis of trans fatty acids in human adipose tissue is developed and examined. Analytical characteristics of the home-made Ag+-SPE column were compared with those of the commercial Discovery Ag-Ion SPE column and it was demonstrated that the both columns can be applied for the fractionation of fatty acid methyl esters.


2019 ◽  
Vol 56 (4) ◽  
pp. 279-286 ◽  
Author(s):  
Tomasz Wasilewski ◽  
Yong-Qiang Sun ◽  
Wiesław Hreczuch ◽  
Artur Seweryn ◽  
Tomasz Bujak

Sign in / Sign up

Export Citation Format

Share Document