The Black Body and Its Radiation

2021 ◽  
pp. 106-114
Keyword(s):  
Author(s):  
Nicholas Manton ◽  
Nicholas Mee

The book is an inspirational survey of fundamental physics, emphasizing the use of variational principles. Chapter 1 presents introductory ideas, including the principle of least action, vectors and partial differentiation. Chapter 2 covers Newtonian dynamics and the motion of mutually gravitating bodies. Chapter 3 is about electromagnetic fields as described by Maxwell’s equations. Chapter 4 is about special relativity, which unifies space and time into 4-dimensional spacetime. Chapter 5 introduces the mathematics of curved space, leading to Chapter 6 covering general relativity and its remarkable consequences, such as the existence of black holes. Chapters 7 and 8 present quantum mechanics, essential for understanding atomic-scale phenomena. Chapter 9 uses quantum mechanics to explain the fundamental principles of chemistry and solid state physics. Chapter 10 is about thermodynamics, which is built around the concepts of temperature and entropy. Various applications are discussed, including the analysis of black body radiation that led to the quantum revolution. Chapter 11 surveys the atomic nucleus, its properties and applications. Chapter 12 explores particle physics, the Standard Model and the Higgs mechanism, with a short introduction to quantum field theory. Chapter 13 is about the structure and evolution of stars and brings together material from many of the earlier chapters. Chapter 14 on cosmology describes the structure and evolution of the universe as a whole. Finally, Chapter 15 discusses remaining problems at the frontiers of physics, such as the interpretation of quantum mechanics, and the ultimate nature of particles. Some speculative ideas are explored, such as supersymmetry, solitons and string theory.


Author(s):  
Anthony Duncan ◽  
Michel Janssen

This is the first of two volumes on the genesis of quantum mechanics. It covers the key developments in the period 1900–1923 that provided the scaffold on which the arch of modern quantum mechanics was built in the period 1923–1927 (covered in the second volume). After tracing the early contributions by Planck, Einstein, and Bohr to the theories of black‐body radiation, specific heats, and spectroscopy, all showing the need for drastic changes to the physics of their day, the book tackles the efforts by Sommerfeld and others to provide a new theory, now known as the old quantum theory. After some striking initial successes (explaining the fine structure of hydrogen, X‐ray spectra, and the Stark effect), the old quantum theory ran into serious difficulties (failing to provide consistent models for helium and the Zeeman effect) and eventually gave way to matrix and wave mechanics. Constructing Quantum Mechanics is based on the best and latest scholarship in the field, to which the authors have made significant contributions themselves. It breaks new ground, especially in its treatment of the work of Sommerfeld and his associates, but also offers new perspectives on classic papers by Planck, Einstein, and Bohr. Throughout the book, the authors provide detailed reconstructions (at the level of an upper‐level undergraduate physics course) of the cental arguments and derivations of the physicists involved. All in all, Constructing Quantum Mechanics promises to take the place of older books as the standard source on the genesis of quantum mechanics.


1975 ◽  
Vol 29 (6) ◽  
pp. 496-500 ◽  
Author(s):  
D. Kember ◽  
N. Sheppard

Infrared emission spectra from metal samples with oxide surface layers are shown to be very advantageously studied using the spectrum-ratioing facility of a recording infrared interferometer. The emission from a given sample is ratioed against that from a black-body emitter at the same temperature so as to give emittance as a function of wavenumber directly. This method has very useful application to irregularly shaped metal emitters. In the absence of selective reflection there is a direct correspondence between emission and absorption spectra for thin layers of an emitting substance. However, the presence of selective reflection leads to reduced emission and to considerable differences in the appearance of “absorption” and emission spectra in regions of strong absorption. Emission spectra obtained from copper plates heated, above 150°C, for different periods in air are shown clearly to indicate the presence of cuprous, Cu(I), and cupric, Cu(II), oxides in the surface layer.


2012 ◽  
Vol 20 (S3) ◽  
pp. A366 ◽  
Author(s):  
Ognjen Ilic ◽  
Marinko Jablan ◽  
John D. Joannopoulos ◽  
Ivan Celanovic ◽  
Marin Soljačić

2011 ◽  
Vol 20 (3) ◽  
Author(s):  
S. Simić ◽  
L. Č. Popović ◽  
P. Jovanović

AbstractHere we consider the influence of microlensing on the spectrum of a lensed object with the angular size 5 μas accepting that the composite emission of this object originates from three different regions arranged around its center. We assume that the lensed object has three concentric regions with a black-body emission; the temperatures of these regions are 10 000 K, 7500 K and 5000 K. We investigate how the integral spectral energy distribution (SED) of such stratified source changes due to microlensing by a group of solarmass stars. We find that the SED and flux ratios in the photometric B, V and R passbands show considerable changes during a microlens event. This indicates that the flux anomaly observed in some lensed quasars may be caused by microlensing of a stratified object.


1988 ◽  
Vol 40 (3) ◽  
pp. 407-417 ◽  
Author(s):  
Cheng Chu ◽  
J. L. Sperling

Electromagnetic fluctuations, induced by energetic charged particles, are calculated using correlation techniques for a uniform magnetized plasma. Power emission in the ion-cyclotron range of frequencies (ICRF) is calculated for a specific model of velocity distribution function. The emissive spectra are distinct from that of the black-body radiation and have features that are consistent with experimental observation.


1999 ◽  
Vol 13 (02) ◽  
pp. 161-189
Author(s):  
C. SYROS

The essentials of quantum mechanics are derived from Liouville's theorem in statistical mechanics. An elementary solution, g, of Liouville's equation helps to construct a differentiable N-particle distribution function (DF), F(g), satisfying the same equation. Reality and additivity of F(g): (i) quantize the time variable; (ii) quantize the energy variable; (iii) quantize the Maxwell–Boltzmann distribution; (iv) make F(g) observable through time-elimination; (v) produce the Planck constant; (vi) yield the black-body radiation spectrum; (vii) support chronotopology introduced axiomatically; (viii) the Schrödinger and the Klein–Gordon equations follow. Hence, quantum theory appears as a corollary of Liouville's theorem. An unknown connection is found allowing the better understanding of space-times and of these theories.


Sign in / Sign up

Export Citation Format

Share Document