scholarly journals Machine Learning for Biomarker Discovery: Significant Pattern Mining

2020 ◽  
Author(s):  
Michael Moor ◽  
Bastian Rieck ◽  
Max Horn ◽  
Catherine Jutzeler ◽  
Karsten Borgwardt

Background: Sepsis is among the leading causes of death in intensive care units (ICU) worldwide and its recognition, particularly in the early stages of the disease, remains a medical challenge. The advent of an affluence of available digital health data has created a setting in which machine learning can be used for digital biomarker discovery, with the ultimate goal to advance the early recognition of sepsis. Objective: To systematically review and evaluate studies employing machine learning for the prediction of sepsis in the ICU. Data sources: Using Embase, Google Scholar, PubMed/Medline, Scopus, and Web of Science, we systematically searched the existing literature for machine learning-driven sepsis onset prediction for patients in the ICU. Study eligibility criteria: All peer-reviewed articles using machine learning for the prediction of sepsis onset in adult ICU patients were included. Studies focusing on patient populations outside the ICU were excluded. Study appraisal and synthesis methods: A systematic review was performed according to the PRISMA guidelines. Moreover, a quality assessment of all eligible studies was performed. Results: Out of 974 identified articles, 22 and 21 met the criteria to be included in the systematic review and quality assessment, respectively. A multitude of machine learning algorithms were applied to refine the early prediction of sepsis. The quality of the studies ranged from "poor" (satisfying less than 40% of the quality criteria) to "very good" (satisfying more than 90% of the quality criteria). The majority of the studies (n= 19, 86.4%) employed an offline training scenario combined with a horizon evaluation, while two studies implemented an online scenario (n= 2,9.1%). The massive inter-study heterogeneity in terms of model development, sepsis definition, prediction time windows, and outcomes precluded a meta-analysis. Last, only 2 studies provided publicly-accessible source code and data sources fostering reproducibility. Limitations: Articles were only eligible for inclusion when employing machine learning algorithms for the prediction of sepsis onset in the ICU. This restriction led to the exclusion of studies focusing on the prediction of septic shock, sepsis-related mortality, and patient populations outside the ICU. Conclusions and key findings: A growing number of studies employs machine learning to31optimise the early prediction of sepsis through digital biomarker discovery. This review, however, highlights several shortcomings of the current approaches, including low comparability and reproducibility. Finally, we gather recommendations how these challenges can be addressed before deploying these models in prospective analyses. Systematic review registration number: CRD42020200133


BMJ Open ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. e053674
Author(s):  
Enrico Glaab ◽  
Armin Rauschenberger ◽  
Rita Banzi ◽  
Chiara Gerardi ◽  
Paula Garcia ◽  
...  

ObjectiveTo review biomarker discovery studies using omics data for patient stratification which led to clinically validated FDA-cleared tests or laboratory developed tests, in order to identify common characteristics and derive recommendations for future biomarker projects.DesignScoping review.MethodsWe searched PubMed, EMBASE and Web of Science to obtain a comprehensive list of articles from the biomedical literature published between January 2000 and July 2021, describing clinically validated biomarker signatures for patient stratification, derived using statistical learning approaches. All documents were screened to retain only peer-reviewed research articles, review articles or opinion articles, covering supervised and unsupervised machine learning applications for omics-based patient stratification. Two reviewers independently confirmed the eligibility. Disagreements were solved by consensus. We focused the final analysis on omics-based biomarkers which achieved the highest level of validation, that is, clinical approval of the developed molecular signature as a laboratory developed test or FDA approved tests.ResultsOverall, 352 articles fulfilled the eligibility criteria. The analysis of validated biomarker signatures identified multiple common methodological and practical features that may explain the successful test development and guide future biomarker projects. These include study design choices to ensure sufficient statistical power for model building and external testing, suitable combinations of non-targeted and targeted measurement technologies, the integration of prior biological knowledge, strict filtering and inclusion/exclusion criteria, and the adequacy of statistical and machine learning methods for discovery and validation.ConclusionsWhile most clinically validated biomarker models derived from omics data have been developed for personalised oncology, first applications for non-cancer diseases show the potential of multivariate omics biomarker design for other complex disorders. Distinctive characteristics of prior success stories, such as early filtering and robust discovery approaches, continuous improvements in assay design and experimental measurement technology, and rigorous multicohort validation approaches, enable the derivation of specific recommendations for future studies.


2021 ◽  
Vol 14 (S1) ◽  
Author(s):  
Zishuang Zhang ◽  
Zhi-Ping Liu

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common cancers. The discovery of specific genes severing as biomarkers is of paramount significance for cancer diagnosis and prognosis. The high-throughput omics data generated by the cancer genome atlas (TCGA) consortium provides a valuable resource for the discovery of HCC biomarker genes. Numerous methods have been proposed to select cancer biomarkers. However, these methods have not investigated the robustness of identification with different feature selection techniques. Methods We use six different recursive feature elimination methods to select the gene signiatures of HCC from TCGA liver cancer data. The genes shared in the six selected subsets are proposed as robust biomarkers. Akaike information criterion (AIC) is employed to explain the optimization process of feature selection, which provides a statistical interpretation for the feature selection in machine learning methods. And we use several methods to validate the screened biomarkers. Results In this paper, we propose a robust method for discovering biomarker genes for HCC from gene expression data. Specifically, we implement recursive feature elimination cross-validation (RFE-CV) methods based on six different classication algorithms. The overlaps in the discovered gene sets via different methods are referred as the identified biomarkers. We give an interpretation of the feature selection process based on machine learning using AIC in statistics. Furthermore, the features selected by the backward logistic stepwise regression via AIC minimum theory are completely contained in the identified biomarkers. Through the classification results, the superiority of interpretable robust biomarker discovery method is verified. Conclusions It is found that overlaps among gene subsets contain different quantitative features selected by the RFE-CV of 6 classifiers. The AIC values in the model selection provide a theoretical foundation for the feature selection process of biomarker discovery via machine learning. What’s more, genes containing in more optimally selected subsets make better biological sense and implication. The quality of feature selection is improved by the intersections of biomarkers selected from different classifiers. This is a general method suitable for screening biomarkers of complex diseases from high-throughput data.


2019 ◽  
Author(s):  
Daniel Stamate ◽  
Min Kim ◽  
Petroula Proitsi ◽  
Sarah Westwood ◽  
Alison Baird ◽  
...  

AbstractINTRODUCTIONMachine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer’s Disease (AD). Here we set out to test the performance of metabolites in blood to categorise AD when compared to CSF biomarkers.METHODSThis study analysed samples from 242 cognitively normal (CN) people and 115 with AD-type dementia utilizing plasma metabolites (n=883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV).RESULTSOn the test data, DL produced the AUC of 0.85 (0.80-0.89), XGBoost produced 0.88 (0.86-0.89) and RF produced 0.85 (0.83-0.87). By comparison, CSF measures of amyloid, p-tau and t-tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively.DISCUSSIONThis study showed that plasma metabolites have the potential to match the AUC of well-established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders


Sign in / Sign up

Export Citation Format

Share Document