Jet Impact onto a Solid Wall

Author(s):  
Alexander L. Yarin ◽  
Ilia V. Roisman ◽  
Cameron Tropea
Keyword(s):  
Author(s):  
Mohamed S. Nasser ◽  
John A. McCorquodale
Keyword(s):  

2010 ◽  
Vol E93-C (7) ◽  
pp. 1038-1046
Author(s):  
Jae-Ho LEE ◽  
Kimio SAKURAI ◽  
Jiro HIROKAWA ◽  
Makoto ANDO
Keyword(s):  

2021 ◽  
Vol 138 ◽  
pp. 106606
Author(s):  
Hongfeng Zhang ◽  
Zhubi Lu ◽  
Penghua Zhang ◽  
Jiayang Gu ◽  
Chunhui Luo ◽  
...  

2021 ◽  
Vol 221 ◽  
pp. 108563
Author(s):  
Liangtao Liu ◽  
Ning Gan ◽  
Jinxiang Wang ◽  
Yifan Zhang
Keyword(s):  

2020 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Song Yang ◽  
Xianyong Zhu ◽  
Hui Wang

The flat-plate momentum test bench is a widely used experimental device in the verification of the momentum law of fluid mechanics, and its error characteristics are of positive significance for theoretical research and engineering innovation and expansion. The SPH-FEM coupling algorithm and spectrum analysis method are used to calculate and analyze the displacement response and spectrum characteristics of the characteristic points of the sensor under different jet loads. Based on them, the cause, classification, law, scope, influence and control method of the measurement error of the system are discussed and analyzed with the application of the error theory and the lateral effect theory of strain gauges; combined with physical experiments, the relevant analysis methods and conclusions are verified. The results show that the measurement error of the system includes linear error and periodic error. Structural deformation in the direction of jet impact is the main source of linear error; linear error increases with the increase of jet loads. Meanwhile, periodic vibration in non-jet direction is the main cause of periodic error, and the periodic error decreases with the increase of jet loads.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 149
Author(s):  
Andrea Chierici ◽  
Leonardo Chirco ◽  
Sandro Manservisi

Fluid-structure interaction (FSI) problems are of great interest, due to their applicability in science and engineering. However, the coupling between large fluid domains and small moving solid walls presents numerous numerical difficulties and, in some configurations, where the thickness of the solid wall can be neglected, one can consider membrane models, which are derived from the Koiter shell equations with a reduction of the computational cost of the algorithm. With this assumption, the FSI simulation is reduced to the fluid equations on a moving mesh together with a Robin boundary condition that is imposed on the moving solid surface. In this manuscript, we are interested in the study of inverse FSI problems that aim to achieve an objective by changing some design parameters, such as forces, boundary conditions, or geometrical domain shapes. We study the inverse FSI membrane model by using an optimal control approach that is based on Lagrange multipliers and adjoint variables. In particular, we propose a pressure boundary optimal control with the purpose to control the solid deformation by changing the pressure on a fluid boundary. We report the results of some numerical tests for two-dimensional domains to demonstrate the feasibility and robustness of our method.


Sign in / Sign up

Export Citation Format

Share Document