Two-Level Minimal Model of a Heat Engine

2021 ◽  
pp. 365-380
Keyword(s):  
Diabetes ◽  
1993 ◽  
Vol 42 (11) ◽  
pp. 1635-1641 ◽  
Author(s):  
P. A. Coates ◽  
R. L. Ollerton ◽  
S. D. Luzio ◽  
I. S. Ismail ◽  
D. R. Owens

2020 ◽  
pp. 56-58
Author(s):  
P.V. Gubarev ◽  
D.V. Glazunov ◽  
V.G. Ruban ◽  
A.S. Shapshal

The thermal calculation of the locomotive traction engine collector is proposed. The equations of the heat balance of its elements are obtained taking into account the cooling air. The calculation results and experimental data of thermal imaging control are presented. Keywords: traction electric motor, collector, thermal calculation, thermal imaging control. [email protected]


Author(s):  
Jochen Rau

Thermodynamic processes involve energy exchanges in the forms of work, heat, or particles. Such exchanges might be reversible or irreversible, and they might be controlled by barriers or reservoirs. A cyclic process takes a system through several states and eventually back to its initial state; it may convert heat into work (engine) or vice versa (heat pump). This chapter defines work and heat mathematically and investigates their respective properties, in particular their impact on entropy. It discusses the roles of barriers and reservoirs and introduces cyclic processes. Basic constraints imposed by the laws of thermodynamics are considered, in particular on the efficiency of a heat engine. The chapter also introduces the thermodynamic potentials: free energy, enthalpy, free enthalpy, and grand potential. These are used to describe energy exchanges and equilibrium in the presence of reservoirs. Finally, this chapter considers thermodynamic coefficients which characterize the response of a system to heating, compression, and other external actions.


Author(s):  
J.V. Lasecki ◽  
R.F. Novak ◽  
J.R. McBride ◽  
J.T. Brockway ◽  
T.K. Hunt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document