scholarly journals Mechanical forcing of water pressure in a hydraulically isolated reach beneath Western Greenland's ablation zone

2016 ◽  
Vol 57 (72) ◽  
pp. 62-70 ◽  
Author(s):  
Toby W. Meierbachtol ◽  
Joel T. Harper ◽  
Neil F. Humphrey ◽  
Patrick J. Wright

ABSTRACTA suite of surface and basal measurements during and after borehole drilling is used to perform in situ investigation of the local basal drainage system and pressure forcing in western Greenland. Drill and borehole water temperature were monitored during borehole drilling, which was performed with dyed hot water. After drilling, borehole water pressure and basal dye concentration were measured concurrently with positions in a GPS strain diamond at the surface. Water pressure exhibited diurnal changes in antiphase with velocity. Dye monitoring in the borehole revealed stagnant basal water for nearly 2 weeks. The interpretation of initial connection to an isolated basal cavity is corroborated by the thermal signature of borehole water during hot water drilling. Measurement-based estimates of cavity size are on the order of cubic meters, and analysis indicates that small changes in its volume could induce the observed pressure variations. It is found that longitudinal coupling effects are unable to force necessary volume changes at the site. Sliding-driven basal cavity opening and elastic uplift from load transfer are plausible mechanisms controlling pressure variations. Elastic uplift requires forcing from a hydraulically connected reach, which observations suggest must be relatively small and in close proximity to the isolated cavity.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.



1998 ◽  
Vol 44 (148) ◽  
pp. 485-497 ◽  
Author(s):  
Paul M. Cutler

AbstractThe time evolution of a subglacial tunnel cross-section is examined usine a two-dimensional finite-element ice-flow model coupled to an idealized drainage system. Simulations are driven by physically based calculations of surface water-input variations at Slorgiaciaren, Sweden. Highlights of the model are its ability to handle unsteady conditions and irregular tunnel shapes. Agreement between modelled water pressure and borehole water levels is good. The following conclusions are reached: (i) Tunnels adapt to fluctuating inflow on time-scales of days. Storms, during which effective pressure ranges from 0 to 0.9 MPa, cause significant adjustments but daily fluctuations due solely to melt-water inflow are minor, (ii) Open-channel flow may become commonplace late in the ablation season, (iii) Initial tunnel shape influences subsequent tunnel evolution and seasonal water-pressure variation. Over the course of a summer, tunnels retain some of their initial shape, though in all experiments the width-to-height ratio increased with time, (iv) Tunnel contraction forms broad low tunnels. However, (v) given two tunnels of equal initial area, the higher narrower one expands more rapidly. Thus, more semi-circular tunnels may capture How from broader neighbours early in the summer.



1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.



1995 ◽  
Vol 41 (139) ◽  
pp. 572-583 ◽  
Author(s):  
B. P. Hubbard ◽  
M. J. Sharp ◽  
I. C. Willis ◽  
M. K. Nielsen ◽  
C. C. Smart

AbstractLate-summer subglacial water pressures have been measured in a dense array of boreholes in the ablation area of Haut Glacier d’Arolla, Switzerland. Interpolated surfaces of minimum diurnal water pressure and diurnal water-pressure variation suggest the presence of a subglacial channel within a more widespread, distributed drainage system. The channel flows along the centre of a variable pressure axis (VPA), some tens of metres wide, that is characterized by low minimum diurnal water pressures (frequently atmospheric) and high diurnal water-pressure variations. These characteristics are transitional over a lateral distance of c. 70 m to higher and more stable subglacial water pressures in the adjacent distributed system. Water-pressure variations recorded in boreholes located close to the centre of the VPA reflect the delivery of surface-derived meltwater to the glacier bed and result in a diurnally reversing, transverse hydraulic gradient that drives water out from the channel into the distributed system during the afternoon and back to the channel overnight. Subglacial observations suggest that such flow occurs through a vertically confined sediment layer. Borehole turbidity records indicate that the resulting diurnal water flows are responsible for the mobilization and transport of fine debris in suspension. Analysis of the propagation velocity and amplitude attenuation cf the diurnal pressure waves suggests that the hydraulic conductivity of the sediment layer decreases exponentially with distance from the channel, falling from c. 10−4 m s−1 at the channel boundary to c. 10−7 m s−1 70 m away. These apparent hydraulic conductivities are consistent with Darcian flow through clean sand and typical glacial till, respectively.We suggest that fine material is systematically flushed from basal sediments located adjacent to large, melt-season drainage channels beneath warm-based glaciers. This process may have important implications for patterns of glacier erosion, hydro-chemistry and dynamics.



2021 ◽  
pp. 1-14
Author(s):  
Inigo Irarrazaval ◽  
Mauro A. Werder ◽  
Matthias Huss ◽  
Frederic Herman ◽  
Gregoire Mariethoz

Abstract Our understanding of the subglacial drainage system has improved markedly over the last decades due to field observations and numerical modelling. However, integrating data into increasingly complex numerical models remain challenging. Here we infer two-dimensional subglacial channel networks and hydraulic parameters for Gorner Glacier, Switzerland, based on available field data at five specific times (snapshots) across the melt season of 2005. The field dataset is one of the most complete available, including borehole water pressure, tracer experiments and meteorological variables. Yet, these observations are still too sparse to fully characterize the drainage system and thus, a unique solution is neither expected nor desirable. We use a geostatistical generator and a steady-state water flow model to produce a set of subglacial channel networks that are consistent with measured water pressure and tracer-transit times. Field data are used to infer hydraulic and morphological parameters of the channels under the assumption that the location of channels persists during the melt season. Results indicate that it is possible to identify locations where subglacial channels are more likely. In addition, we show that different network structures can equally satisfy the field data, which support the use of a stochastic approach to infer unobserved subglacial features.



1979 ◽  
Vol 23 (89) ◽  
pp. 429-430 ◽  
Author(s):  
H. Röthlisberger ◽  
A. Iken ◽  
U. Spring

AbstractA technique for drilling deep holes with a hot-water jet has been developed in recent years at our institute (Iken and others, [1977]). The holes have served to investigate the water pressure at the bed of various Swiss glaciers since 1973. Drainage occurred naturally in rare cases when the drill reached the bed, but more often it was necessary to use explosives first, probably because the drill was stopped short of the bottom of the glacier by rock inclusions in the ice. In order to record piezometric water pressure over an extended period of time it was necessary that water was draining fairly continuously into the hole, otherwise the water level dropped eventually to a great depth when the weather turned cold, whereupon the holes closed off. By suddenly shutting off the water supply to a hole and observing the lowering of the water level with time some information on the channel characteristics has been obtained. In many cases there was little change of level, indicating that such a hole gives almost the true pressure head of the subglacial drainage system.Our efforts have so far been concentrated on flat tongues of fair size over 100 m thick, the distance from the uppermost hole to the terminus ranging from about 1 to 4.5 km. The main characteristic of the water pressure is a very large diurnal variation of the order of 100 m and more. The mean pressure generally rises and falls in times of high and low water supply, respectively, but re-adjusts to approximately the original level within a few days. Mean levels are higher early in the melt season than later, and the amplitude of the diurnal variation has a tendency to increase with time, but also shows strong short-term modulations depending on the water supply. From observations on moulins and a hole which had remained connected to the bed from the previous year it seems likely that at the beginning of the melt season the water pressure at the bed may become as large as or larger than the ice pressure.On Gornergletscher a record of water pressures has been obtained during the drainage of Gornersee, an ice-dammed lake at the confluence of the two main branches of the glacier. Levels stayed high day and night in the piezometer holes, which were located off to the side of where the main drainage channel was suspected to pass through. The surface drainage pattern was affected over a large area of the glacier. These two observations indicate that during the drainage of the lake some sort of sheet flow must have occurred. The surface velocity of the glacier roughly doubled during that time, but no lifting-up of the ice was observed within the accuracy of the survey. On one occasion on Glacier de Breney the main channel must have been blocked temporarily between an upper area, where the water level was rising simultaneously in three piezometer holes, and an area further down-glacier, where the holes were not affected.



1979 ◽  
Vol 23 (89) ◽  
pp. 429-430 ◽  
Author(s):  
H. Röthlisberger ◽  
A. Iken ◽  
U. Spring

Abstract A technique for drilling deep holes with a hot-water jet has been developed in recent years at our institute (Iken and others, [1977]). The holes have served to investigate the water pressure at the bed of various Swiss glaciers since 1973. Drainage occurred naturally in rare cases when the drill reached the bed, but more often it was necessary to use explosives first, probably because the drill was stopped short of the bottom of the glacier by rock inclusions in the ice. In order to record piezometric water pressure over an extended period of time it was necessary that water was draining fairly continuously into the hole, otherwise the water level dropped eventually to a great depth when the weather turned cold, whereupon the holes closed off. By suddenly shutting off the water supply to a hole and observing the lowering of the water level with time some information on the channel characteristics has been obtained. In many cases there was little change of level, indicating that such a hole gives almost the true pressure head of the subglacial drainage system. Our efforts have so far been concentrated on flat tongues of fair size over 100 m thick, the distance from the uppermost hole to the terminus ranging from about 1 to 4.5 km. The main characteristic of the water pressure is a very large diurnal variation of the order of 100 m and more. The mean pressure generally rises and falls in times of high and low water supply, respectively, but re-adjusts to approximately the original level within a few days. Mean levels are higher early in the melt season than later, and the amplitude of the diurnal variation has a tendency to increase with time, but also shows strong short-term modulations depending on the water supply. From observations on moulins and a hole which had remained connected to the bed from the previous year it seems likely that at the beginning of the melt season the water pressure at the bed may become as large as or larger than the ice pressure. On Gornergletscher a record of water pressures has been obtained during the drainage of Gornersee, an ice-dammed lake at the confluence of the two main branches of the glacier. Levels stayed high day and night in the piezometer holes, which were located off to the side of where the main drainage channel was suspected to pass through. The surface drainage pattern was affected over a large area of the glacier. These two observations indicate that during the drainage of the lake some sort of sheet flow must have occurred. The surface velocity of the glacier roughly doubled during that time, but no lifting-up of the ice was observed within the accuracy of the survey. On one occasion on Glacier de Breney the main channel must have been blocked temporarily between an upper area, where the water level was rising simultaneously in three piezometer holes, and an area further down-glacier, where the holes were not affected.



1999 ◽  
Vol 28 ◽  
pp. 253-260 ◽  
Author(s):  
Regine Hock ◽  
lmut Iken ◽  
Alexander Wangler

AbstractThe subglacial drainage in a pronounced overdeepening of Grosser Aletschgletscher, Switzerland was investigated by borehole water-level observations and dye-tracer injections. In August 1990 and 1991, tracer was injected at the bottom of a borehole (depth 904 m and 710 m, respectively), and simultaneously in a nearby moulin. The moulin and borehole injections identified two different flow systems coexisting within the overdeepening. The moulin injection yielded short-lived, highly peaked break-through curves with high velocities, indicating a hydraulically efficient channelized system. The borehole-tracer return occurred in broad multiple peaks characterized by a striking diurnal periodicity and, in general, correlated inversely with discharge. Water level in the borehole experienced high diurnal variations in phase with discharge at the snout indicating “closed channel flow” over large parts of the glacier. We infer that the boreholes drained subglacially and were connected to a drainage system with significant long-term storage capacity. Release of labelled water was triggered by daily water-pressure cycles.



1995 ◽  
Vol 41 (139) ◽  
pp. 572-583 ◽  
Author(s):  
B. P. Hubbard ◽  
M. J. Sharp ◽  
I. C. Willis ◽  
M. K. Nielsen ◽  
C. C. Smart

AbstractLate-summer subglacial water pressures have been measured in a dense array of boreholes in the ablation area of Haut Glacier d’Arolla, Switzerland. Interpolated surfaces of minimum diurnal water pressure and diurnal water-pressure variation suggest the presence of a subglacial channel within a more widespread, distributed drainage system. The channel flows along the centre of avariable pressure axis(VPA), some tens of metres wide, that is characterized by low minimum diurnal water pressures (frequently atmospheric) and high diurnal water-pressure variations. These characteristics are transitional over a lateral distance of c. 70 m to higher and more stable subglacial water pressures in the adjacent distributed system. Water-pressure variations recorded in boreholes located close to the centre of the VPA reflect the delivery of surface-derived meltwater to the glacier bed and result in a diurnally reversing, transverse hydraulic gradient that drives water out from the channel into the distributed system during the afternoon and back to the channel overnight. Subglacial observations suggest that such flow occurs through a vertically confined sediment layer. Borehole turbidity records indicate that the resulting diurnal water flows are responsible for the mobilization and transport of fine debris in suspension. Analysis of the propagation velocity and amplitude attenuation cf the diurnal pressure waves suggests that the hydraulic conductivity of the sediment layer decreases exponentially with distance from the channel, falling from c. 10−4m s−1at the channel boundary to c. 10−7m s−170 m away. These apparent hydraulic conductivities are consistent with Darcian flow through clean sand and typical glacial till, respectively.We suggest that fine material is systematically flushed from basal sediments located adjacent to large, melt-season drainage channels beneath warm-based glaciers. This process may have important implications for patterns of glacier erosion, hydro-chemistry and dynamics.



2009 ◽  
Vol 50 (52) ◽  
pp. 101-108 ◽  
Author(s):  
T.J. Fudge ◽  
J.T. Harper ◽  
N.F. Humphrey ◽  
W.T. Pfeffer

AbstractMeasurements of basal water pressure from 15 boreholes located at both local (tens of meters) and regional (kilometers) length scales were used to elucidate the pressure/sliding relationship during an autumn rapid motion event on Bench Glacier, Alaska, USA. The 8 day event had two distinct phases, each with a ten-fold speed-up with respect to winter velocity. The water pressure in all 15 boreholes varied synchronously during the speed-up. The first phase of rapid sliding began after a peak in basal water pressure and continued while the pressure was elevated and stable, or decreasing. The second phase of rapid sliding occurred when the basal water pressure was low but increasing, and terminated before the pressure peaked. Pressure and velocity do not appear unrelated, but the pressure/sliding relationship was not consistently linked to increasing, decreasing or a critical water pressure. The pressure variations and sliding accelerations are a response to a warm rainstorm, although equally large input events occurred in weeks prior with no apparent response. Drainage system evolution therefore appears to play a key role in both the acceleration and the pressure/velocity relationship. Basal cavity dynamics are likely responsible for three episodes of reverse (up-valley) motion observed after enhanced sliding.



Sign in / Sign up

Export Citation Format

Share Document