Effects of plane of nutrition during the first month of pregnancy on conception rate, foetal development and lamb output of mature and adolescent ewes

2006 ◽  
Vol 82 (6) ◽  
pp. 947-954 ◽  
Author(s):  
R. W. Annett ◽  
A. F. Carson

AbstractEmbryo transfer studies have demonstrated that high plane feeding in early pregnancy is detrimental to the successful establishment of pregnancy in adolescent but not mature ewes. To further examine this relationship with ewes that conceive naturally and to investigate its effects on foetal development, 102 Greyface and Texel×Greyface ewes (body condition score (BCS) 3·8) and 114 Texel×Greyface adolescent ewes (BCS 3·3) were allocated to one of three treatments following a synchronized mating. From day 1 to 31 of pregnancy, animals were offered grass nuts (10·2 MJ metabolizable energy (ME) per kg dry matter (DM); 163 g crude protein per kg DM) at one of three levels to supply approximately 2·0 (H); 1·0 (M) and 0·6 (L) of their predicted ME requirements for maintenance. Increasing the post-mating plane of nutrition resulted in significant increases in ewe live weight (P<0·001) and BCS (P<0·001) during the treatment period. When diets were standardized for all animals during mid pregnancy (days 31 to 105), L ewes gained more live weight (P<0·05) and BCS (P<0·001) than H ewes. Early pregnancy nutrition had no effect on the conception rate of mature ewes; however adolescent ewes on the H and M treatments had lower conception rates (P<0·05) than those offered the L diet (0·59, 0·61 and 0·82 respectively). As a result, L adolescent ewes tended to have a higher mean total lamb birth weight per ewe mated (P=0·09) although lamb output at weaning was not influenced by plane of nutrition. Lambs born from adolescent mothers had lower lamb birth weights (P<0·001) and a shorter mean head length, crown-rump length and thoracic girth (P<0·001). Foetuses from H ewes had longer hind legs than those from L ewes on day 83 of gestation (P<0·05) and at term (P<0·05). The results of this study suggest that allowing adolescent but not mature ewes to lose live weight and body condition can increase the proportion of productive ewes following a natural service.

1996 ◽  
Vol 62 (2) ◽  
pp. 217-223 ◽  
Author(s):  
E. Zerbini ◽  
A. G. Wold ◽  
T. Gemeda

AbstractThis study examined whether a prolonged anoestrus had any long-term effect on subsequent fertility of cows and estimated the relationship between repletion and resumption of reproductive activity. Twelve low body-condition, non-milking, non-cycling (depletion state) F1 crossbred dairy cows (Friesian × Boron and Simmental × Boran) were stratified to two diets (H: natural grass hay offered ad libitum and mineral lick +3 kg concentrate, and H + P: H + 7 h/day natural pasture grazing) according to parity, body weight, body condition score and calving intervals. Daily dry-matter intake was similar between cows on the two diets, but total intake of nitrogen was proportionately about 0·10 greater for cows with access to pasture. The calculated metabolizable energy intake was more than twice the estimated maintenance requirement for cows on both diets. Live weights increased from depletion to ovulation, to oestrus and to conception, but were not significantly different between cows on both diets. Body condition score increased from depletion time to first oestrus and to repletion and was greater for H + P than for H cows at first oestrus and at conception. After an average of 45 days of repletion, cows were already ovulating with no significant differences between cows on either diet. Days to onset of oestrus were 83 and 44 days for diet H and H + P, respectively. Time to conception was similar between coivs on both diets. Conception occurred when cows on H and H + P diets had recovered proportionately 0·51 and 0·58 of their live-weight and 0·84 and 1·27 of their body condition loss, respectively. Interval to repletion weight was 178 and 139 days for cows on the H and H + P diet, respectively. Cows subjected to an exceptionally long depletion period were able to resume ovarian cyclic activity and to conceive in less than 3 months when given twice maintenance requirements. These results have important management implication for on-farm situations in the tropics where fluctuations of food availability and quality occur.


2008 ◽  
Vol 13 (4) ◽  
pp. 348 ◽  
Author(s):  
M. MANNINEN ◽  
K. SAARIJÄRVI ◽  
H. HUHTA

The present study evaluated the effects of feeding strategies with alternative feeds on the performance of mature suckler cows and their progeny during indoor feeding and subsequent grazing. In both experiments, a 2 × 2 factorially arranged design consisted of two feeding strategies (Step-up, Sas offered on Strategy S, but at a constant daily level. In Experiment 1, cows on Diet C were offered grass silage and straw and on Diet A grass silage and a fl our-mill industry by-product. On Strategy S, feeding was stepped with barley (0, 1.5 and 3.5 kg d-1). On Strategy F, barley was offered 1.43 kg per head daily. In Experiment 2, cows were offered either grass silage (C) or whole-crop barley silage (A) as a sole feed. Strategy S was carried out by offering 68, 95 and 119 MJ metabolizable energy (ME) per cow daily. On Strategy F, roughage was given daily 97 MJ ME. In both experiments, there were no signifi cant differences between treatments in the cow live weight, body condition score, calf pre-weaning live weight gain and cow reproduction. Strategy F can be practised in the nutrition of mature suckler cows in marginal circumstances. Flour-mill industry by-product can partly replace grass silage and straw in the winter diet. Wholecrop barley silage can be offered as a sole feed to suckler cows with good body condition score in autumn.;


1986 ◽  
Vol 43 (3) ◽  
pp. 391-396 ◽  
Author(s):  
I. A. Wright ◽  
A. J. F. Russel ◽  
E. A. Hunter

ABSTRACTForty-eight Hereford × Friesian and Blue Grey cows ranging in body condition score from 1·75 to 4·0, 12 weeks before calving, were fed to achieve three levels of body condition score at calving. Half the cows were fed on an increasing plane of nutrition as pregnancy advanced and half were fed on a flat-rate feeding system. The condition scores achieved by the three groups at calving were 2·28, 2·47 and 2·70 (s.e.d. 0·071; P < 0·001). Differences in cow body condition at calving were reflected in cow live weight and condition 6 weeks later, but there was no effect on calf performance. Hereford × Friesian cows lost more weight in early lactation, tended to produce more milk and their calves were heavier. Pattern of feeding had no effect on cow condition score or weight at calving or on subsequent performance.It was calculated that each unit of body condition-score loss in late pregnancy contributes the equivalent of 3200 MJ dietary metabolizable energy while 6600 MJ dietary metabolizable energy are required for 1 unit of condition-score gain.


2012 ◽  
Vol 150 (5) ◽  
pp. 644-662 ◽  
Author(s):  
H. DOVE ◽  
J. A. MILNE ◽  
C. S. LAMB ◽  
A. M. SIBBALD ◽  
H. A. McCORMACK

SUMMARYThe present paper examines the effect of the type of supplement given to grazing ewes in early lactation on the performance of ewes and lambs on temperate sown pastures. Lactating ewes grazed perennial ryegrass pastures at either low- or high-herbage masses, between days 8 and 96 of lactation. On the low-herbage mass treatments, ewes were either unsupplemented or received either an energy supplement (sugarbeet pulp) or a protein supplement (1:1 sugarbeet pulp:formaldehyde-treated soyabean meal) between days 8 and 50 of lactation. The provision of supplements or the higher herbage mass led to increases in live weight (LW) and body condition score of ewes during days 8–50 of lactation, while unsupplemented ewes on the low-herbage mass treatment lost LW and had lower body condition scores. After supplementation finished, previously supplemented ewes or those grazing the higher herbage mass lost LW and condition, while unsupplemented ewes grazing the low-herbage mass gained both LW and condition. Non-treatment factors such as ewe dentition score significantly affected ewe and lamb LW gains. Regression analyses indicated that lamb LW gains between days 8 and 50 of lactation were 40–60 g/d greater in lambs from supplemented ewes or ewes grazing the higher herbage mass cf. unsupplemented ewes. Overall, there was no difference in the response of ewes or lambs to the type of supplement. Milk yields were estimated in a subset of ewes (replicate 4). Ewes on the high-herbage mass treatment or those supplemented with protein had higher milk yields than those on the low-herbage mass treatment or those given the energy supplement. Supplemented ewes in this replicate had higher metabolizable energy intakes (MEIs). Measurements of digesta flow in a further subset of ewes indicated that both supplements resulted in greater ruminal and post-ruminal supplies of energy and protein than in the unsupplemented ewes at the lower herbage mass, but differences in ruminal and post-ruminal nutrient provision between the supplements were less than had been intended. It is suggested that this is the reason for there being no statistical difference in the performance of ewes and lambs in response to the type of supplement.


1993 ◽  
Vol 56 (3) ◽  
pp. 409-412 ◽  
Author(s):  
A. Purroy ◽  
C. Jaime ◽  
F. Muñoz ◽  
T. T. Treacher

The effect of level of barley feeding (200, 400 or 600 g fresh matter per ewe per day) on the change in body condition, between weaning and mating, of ewes offered barley straw treated with ammonia was examined in experiment 1. In experiment 2, a 2 × 2 factorial design was used with two levels of restriction of metabolizable energy in lactation (proportionately 0·85 and 0·70 of the requirements) followed by two levels of feeding of barley (250 or 500 g) in the main experimental period. In experiment 1 the intake of straw was significantly lower when 600 glday was offered, and ewes given 200 g/day barky had significantly lower gain in live weight and body condition score. In experiment 2 the level of energy intake in lactation did not affect the intakes of straw, but the current level of barley feeding did.


2016 ◽  
Vol 54 (2) ◽  
pp. 214-226
Author(s):  
O. A. CASTELÁN-ORTEGA ◽  
C. G. MARTÍNEZ-GARCÍA ◽  
F. L. MOULD ◽  
P. DORWARD ◽  
G. C. MIRANDA-DE LA LAMA ◽  
...  

SUMMARYThe objectives were to assess the following: (1) the relationship between sward height and chemical composition of four pasture types in association with grazing behaviour and body condition score (BCS) of dairy cows, and (2) the possibility of developing predictive equations of the nutrient intake and grazing behaviour within a continued grazing system. Pasture type had a significant (p < 0.01) effect on nutrient supply from January to June for all pastures investigated. Ryegrass–white clover pasture (RW) had the highest metabolizable protein and metabolizable energy, followed by kikuyu pasture (KP), which was significantly (p < 0.001) higher than native pastures 1 and 2 (NP1 and NP2). The highest values for effective grazing time, bite rate and BCS were found when dairy cows grazed RW followed by KP, NP2 and NP1. The results suggested that pasture type and sward height influenced grazing behaviour and BCS of dairy cows during the dry season. In the same vein, RW showed higher effective grazing time, bite rate, nutrient intake and BCS than the other three pastures suggesting that RW pastures that appear to be more expensive than native pastures could result in superior cow performance.


1984 ◽  
Vol 38 (1) ◽  
pp. 33-44 ◽  
Author(s):  
I. A. Wright ◽  
A. J. F. Russel

ABSTRACTA number of possible indices of body composition (live weight, skeletal size, total body water as estimated by deuterium oxide dilution, blood and red cell volumes as estimated by Evans Blue dilution, ultrasonic measurements of subcutaneous fat depth and eye-muscle area, and body condition scoring) was examined using 73 non-pregnant, non-lactating, mature cows of Hereford × Friesian, Blue-Grey, British Friesian, Galloway and Luing genotypes, ranging in body condition score from 0·75 to 4·5. Direct measurements of body composition in terms of water, fat, protein and ash were made following slaughter.Live weight, deuterium oxide dilution, ultrasonic measurements of subcutaneous fat depth and eyemuscle area, and body condition score were all considered to be potentially useful predictors of body composition. Combinations of techniques offered better predictions than did any single index. Using a combination of measurements it was possible to predict body fat and protein with a residual s.d. of 13·1 kg and 3·15 kg respectively. Breed differences in the partition of fat among the main adipose tissue depots necessitated the development of specific prediction equations for body fat based on condition score and subcutaneous fat depth for different breeds. Equations remain to be developed for predicting body composition in cows in different physiological states.


1994 ◽  
Vol 58 (2) ◽  
pp. 231-235 ◽  
Author(s):  
A. M. Sibbald ◽  
W. G. Kerr

AbstractTo examine the effects of body condition and previous nutrition on the herbage intake of ewes grazing swards of different heights in autumn, 96 Scottish Blackface X Border Leicester ewes with a wide range of body condition (score 1·75 to 3·50), were initially housed and given 50 g dry matter (DM) per kg metabolic live weight (M)0·75 per day (treatment L) or 95 g DM per kg M0·75 per day (treatment H) of a pelleted dried grass diet (11·6 MJ metabolizable energy per kg DM) for 6 weeks after weaning in July. The H ewes gained more live weight (9·0 v. 2·7 kg) and body condition score (0·39 v. 0·17) than the L ewes. Half the animals from each treatment were then allocated to each of two ryegrass pastures with a sward height of 5 cm (LS) or 10 cm (HS) for a further 6-week grazing period. During the grazing period there was no significant effect of indoor feeding level on herbage intake, but the L ewes gained more live weight (6·4 v. 5·0 kg) than the H ewes. On the HS, compared with the LS sward, mean herbage intakes were higher (70·0 v. 60·5 g DM per kg M0·75) as were gains in live weight and condition score (7·9 v. 3·4 kg; 0·18 v. 0·0). There were no interactions between the effects of sward height and previous feeding level on herbage intake. Ewes in low body condition (< 2·5) at the start of the grazing period ingested the same amount of herbage on both swards (70·3 g DM per kg M0·75) whereas ewes in high body condition (> 2·5) ingested more (67·0 v. 51·6 g DM per kg M0·75) on the HS compared with the LS sward. The responses of ewes in low and high body condition to different sward heights are discussed in relation to appetite drive and aspects of grazing behaviour.


1985 ◽  
Vol 41 (2) ◽  
pp. 167-175 ◽  
Author(s):  
M. J. Ducker ◽  
Rosemary A. Haggett ◽  
W. J. Fisher ◽  
S. V. Morant

ABSTRACTData from a large controlled experiment to investigate the effect of level of nutrition on reproductive performance were used to assess the value of production and blood measures as indicators of energy status in lactating dairy heifers. Live-weight change showed the strongest and most consistent relationship to mean energy balance (the difference between metabolizable energy intake and that used for milk production and maintenance) (P < 0·01 to P < 0·001). Body-condition score at a particular time was more closely related to mean energy balance in the preceding 4-week period (P < 0·05) than current energy balance. There was also a lag in the relationship between energy balance and live-weight change and mean body-condition score. Ultrasonic back fat measurements were significantly correlated with both loin and tailhead body-condition score (P < 0·001) but were more strongly related to mean energy balance in the preceding period (P < 0·05 to P < 0·001) than the body-condition scores.Blood samples were taken from all heifers 2 weeks before calving and 1, 5, 9, 13 and 18 weeks after calving and were analysed for 13 constituents. Concentrations of blood metabolites did not show consistently strong correlations with mean energy balance. The only blood metabolite to be measurably affected by the nutritional treatments applied in lactation was β-hydroxybutyrate.At best, combinations of production measures and blood metabolites were only able to predict the mean daily energy balance with a 95% confidence interval of ±20 MJ for an individual animal although this confidence interval was reduced to ±3 MJ for 100 animals.


Sign in / Sign up

Export Citation Format

Share Document