Analytical Solutions of Ordinary Differential Equations

Author(s):  
Tomas B. Co
Author(s):  
Rami AlAhmad ◽  
Qusai AlAhmad ◽  
Ahmad Abdelhadi

Autonomous differential equations of fractional order and non-singular kernel are solved. While solutions can be obtained through numerical, graphical, or analytical solutions, we seek an implicit analytical solution.


2021 ◽  
Vol 2 (2) ◽  
pp. 13-30
Author(s):  
Awais Younus ◽  
Muhammad Asif ◽  
Usama Atta ◽  
Tehmina Bashir ◽  
Thabet Abdeljawad

In this paper, we provide the generalization of two predefined concepts under the name fuzzy conformable differential equations. We solve the fuzzy conformable ordinary differential equations under the strongly generalized conformable derivative. For the order $\Psi$, we use two methods. The first technique is to resolve a fuzzy conformable differential equation into two systems of differential equations according to the two types of derivatives. The second method solves fuzzy conformable differential equations of order $\Psi$ by a variation of the constant formula. Moreover, we generalize our results to solve fuzzy conformable ordinary differential equations of a higher order. Further, we provide some examples in each section for the sake of demonstration of our results.


2020 ◽  
Vol 27 (4) ◽  
Author(s):  
A. Rubino ◽  
S. Dotsenko ◽  
◽  

Purpose. The dynamics of nonstationary, nonlinear, axisymmetric, warm-core geophysical surface frontal vortices affected by Rayleigh friction is investigated semi-analytically using the nonlinear, nonstationary reduced-gravity shallow-water equations. The scope is to enlarge the number of known (semi)analytical solutions of nonstationary, nonlinear problems referring to geophysical problems and even to pave the way to their extension to broader geometries and/or velocity fields. Methods and Results. The used method to obtain the solutions is based on the decomposition of the original equations in a part expressing their prescribed spatial structure, so that they can be transformed into ordinary differential equations depending on time only. Based on that analytical procedure, the solutions are then found numerically. In this frame, it is found that vortices characterized by linear distributions of their radial velocity and arbitrary structures of their section and azimuthal velocity can be described exactly by a set of nonstationary, nonlinear coupled ordinary differential equations. The first-order problem (i. e., that describing vortices characterized by a linear azimuthal velocity field and a quadratic section) consists of a system of 4 differential equations, and each further order introduces in the system three additional ordinary differential equations and two algebraic equations. In order to illustrate the behavior of the nonstationary decaying vortices and to put them in the context of observed dynamics in the World Ocean, the system’s solution for the first-order and for the second-order problem is then obtained numerically using a Runge-Kutta method. The solutions demonstrate that inertial oscillations and an exponential attenuation dominate the vortex dynamics: expansions and shallowings, contractions and deepenings alternate during an exact inertial period while the vortex decays. The dependence of the vortex dissipation rate on its initial radius is found to be non-monotonic: it is higher for small and large radii. The possibility of solving (semi)analytically complex systems of differential equations representing observed physical phenomena is rare and very valuable. Conclusions. Our analysis adds realism to previous theoretical investigations on mesoscale vortices, represents an ideal tool for testing the accuracy of numerical models in simulating nonlinear, nonstationary frictional frontal phenomena in a rotating ocean, and paves the way to further extensions of (semi-) analytical solutions of hydrodynamical geophysical problems to more arbitrary forms and more complex density stratifications.


2012 ◽  
Vol 204-208 ◽  
pp. 4502-4505 ◽  
Author(s):  
Pavel A. Akimov

The distinctive paper is devoted to correct discrete-continual finite element method (DCFEM) of structural analysis based on precise analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients. Corresponding semianalytical (discrete-continual) formulations are contemporary mathematical models which currently becoming available for computer realization. Major peculiarities of DCFEM include uni-versality, computer-oriented algorithm involving theory of distributions, computational stability, optimal conditionality of resulting systems and partial Jordan decompositions of matrices of coeffi-cients, eliminating necessity of calculation of root vectors.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Haci Mehmet Baskonus ◽  
Hasan Bulut

AbstractIn this paper, we apply the Fractional Adams-Bashforth-Moulton Method for obtaining the numerical solutions of some linear and nonlinear fractional ordinary differential equations. Then, we construct a table including numerical results for both fractional differential equations. Then, we draw two dimensional surfaces of numerical solutions and analytical solutions by considering the suitable values of parameters. Finally, we use the L


2013 ◽  
Vol 436 ◽  
pp. 127-136 ◽  
Author(s):  
Corina Bokor ◽  
Vlad Mureşan ◽  
Toderiţa Nemeş ◽  
Claudiu Isarie

In this paper the authors propose an approach for analogical modeling and numerical simulation of the phenomena of sintering, taking into account different cases depending on the type of energy used in the process of aggregation and the nature of the material powder, using a software which simulates the propagation and the control of the temperature. Many physical phenomena encountered in science and engineering can be described mathematically through partial differential equations (PDE) and ordinary differential equations (ODE) such as propagation phenomena, engineering applications, hydrotechnics, chemistry, pollution a.s.o. There may be situations when the exact establish of the analytical solutions becomes difficult or impossible for arbitrary shapes. In these cases the determination of some approximant solution through experimental methods, that have to verify with acceptable errors, the PDE expression specified to the studied phenomenon, is justified.


Vestnik IGEU ◽  
2019 ◽  
pp. 59-70 ◽  
Author(s):  
E.V. Kotova ◽  
A.V. Eremin ◽  
V.A. Kudinov ◽  
V.K. Tkachev ◽  
A.E. Kuznetsova

Finding analytical solutions to the problems of thermal conductivity with variable physical properties of the medium by classical analytical methods is very complicated mathematically. The known expressions repre-senting complex infinite series including two types of Bessel functions and gamma-functions are, in fact, numerical as they require a numerical solution to complex transcendental equations with eigenvalues of the boundary problem. Such solutions can hardly be used in engineering applications, especially in cases when a solution to a certain problem is only an intermediate stage in other problems (such as thermoelasticity and control problems, inverse problems, etc.) which can be solved effectively only by finding analytical solutions to the initial problems. Therefore, an urgent problem now is to develop new methods of obtaining analytical solutions to the abovementioned problems, at least approximate ones. The study employed methods of additional boundary conditions and additional unknown functions in the integral method of heat balance. High-precision approximate analytical solutions to the transient heat conduction problem with nonhomogeneous physical properties of the medium for an infinite plate under symmetric boundary conditions of the first type have been obtained. The initial problem for partial differential equations is reduced to two problems in which ordinary differential equations are integrated. Additional boundary conditions are defined in such a way that their fulfillment in accordance with the new method is equivalent to the result of solving the initial partial differential equation at the boundary points and at the temperature perturbation front (for the first stage of the process). By combining methods with finite and infinite heat propagation rate we have been able to obtain high-precision analytical solutions for the whole time range of the unsteady process including its small and ultra small values. The solutions look like simple algebraical polynomials not including special functions (Bessel, Legendre, gamma-functions and others). Since it is not necessary to directly integrate the initial equations by the space variable and to reduce them to ordinary differential equations with additional unknown functions, the considered method can be used for solving complex boundary problems in which differential equations do not allow distinguishing between the variables (into nonlinear, with linear boundary conditions and heat sources, etc.).


Sign in / Sign up

Export Citation Format

Share Document