Turbulence: generalities; scaling laws for shear flows

2014 ◽  
pp. 182-224
Author(s):  
G. I. Barenblatt
Keyword(s):  
2003 ◽  
Vol 13 (2) ◽  
pp. 87-92 ◽  
Author(s):  
A. J. Nogueiro ◽  
J. M. Maia

Abstract The present work is concerned with the study of the rheology of polymer solutions spanning different concentration regimes and originates from a former round-robin research programme on this subject, the S1 project, involving a number of research groups and institutions. The base fluid for this programme was the so-called S1 fluid, which is a 2.5% w/w solution of Polyisobutylene (PIB) in a solvent consisting of a mixture of polybutene oil and dekalin. In this paper a set of solutions having different concentrations of PIB are studied in steady shear, oscillatory shear and in axi-symmetrical contraction flows. The focus of the study is on the possibility of finding concentration scaling laws for polymer solutions spanning each or several of the concentration regimes. The results in shear flows show that it is possible to find scaling laws both for temperature and concentration in all regimes. Extensional results show that the curves superimpose within each concentration regime, but not over the whole range of concentrations. Accordingly, concentration scaling laws were then found for both shear and extension, the latter depending on the concentration regime: dilute, semi-dilute or concentrated.


2019 ◽  
Vol 875 ◽  
pp. 657-698
Author(s):  
Adrien Lefauve ◽  
J. L. Partridge ◽  
P. F. Linden

We describe the long-term dynamics of sustained stratified shear flows in the laboratory. The stratified inclined duct (SID) experiment sets up a two-layer exchange flow in an inclined duct connecting two reservoirs containing salt solutions of different densities. This flow is primarily characterised by two non-dimensional parameters: the tilt angle of the duct with respect to the horizontal, $\unicode[STIX]{x1D703}$ (a few degrees at most), and the Reynolds number $Re$, an input parameter based on the density difference driving the flow. The flow can be sustained with constant forcing over arbitrarily long times and exhibits a wealth of dynamical behaviours representative of geophysically relevant sustained stratified shear flows. Varying $\unicode[STIX]{x1D703}$ and $Re$ leads to four qualitatively different regimes: laminar flow; mostly laminar flow with finite-amplitude, travelling Holmboe waves; spatio-temporally intermittent turbulence with substantial interfacial mixing; and sustained, vigorous interfacial turbulence (Meyer & Linden, J. Fluid Mech., vol. 753, 2014, pp. 242–253). We seek to explain the scaling of the transitions between flow regimes in the two-dimensional plane of input parameters $(\unicode[STIX]{x1D703},Re)$. We improve upon previous studies of this problem by providing a firm physical basis and non-dimensional scaling laws that are mutually consistent and in good agreement with the empirical transition curves we inferred from 360 experiments spanning $\unicode[STIX]{x1D703}\in [-1^{\circ },6^{\circ }]$ and $Re\in [300,5000]$. To do so, we employ state-of-the-art simultaneous volumetric measurements of the density field and the three-component velocity field, and analyse these experimental data using time- and volume-averaged potential and kinetic energy budgets. We show that regime transitions are caused by an increase in the non-dimensional time- and volume-averaged kinetic energy dissipation within the duct, which scales with $\unicode[STIX]{x1D703}Re$ at high enough angles. As the power input scaling with $\unicode[STIX]{x1D703}Re$ is increased above zero, the two-dimensional, parallel-flow dissipation (power output) increases to close the budget through an increase in the magnitude of the exchange flow, incidentally triggering Holmboe waves above a certain threshold in interfacial shear. However, once the hydraulic limit of two-layer exchange flows is reached, two-dimensional dissipation plateaus and three-dimensional dissipation at small scales (turbulence) takes over, at first intermittently, and then steadily, in order to close the budget and follow the $\unicode[STIX]{x1D703}Re$ scaling. This general understanding of regime transitions and energetics in the SID experiment may serve as a basis for the study of more complex sustained stratified shear flows found in the natural environment.


1993 ◽  
Vol 248 ◽  
pp. 521-529 ◽  
Author(s):  
G. I. Barenblatt ◽  
V. M. Prostokishin

In Part 1 of this work (Barenblatt 1993) a non-universal scaling law (depending on the Reynolds number) for the mean velocity distribution in fully developed turbulent shear flow was proposed, together with the corresponding skin friction law. The universal logarithmic law was also discussed and it was shown that it can be understood, in fact, as an asymptotic branch of the envelope of the curves corresponding to the scaling law.Here in Part 2 the comparisons with experimental data are presented in detail. The whole set of classic Nikuradze (1932) data, concerning both velocity distribution and skin friction, was chosen for comparison. The instructive coincidence of predictions with experimental data suggests the conclusion that the influence of molecular viscosity within the main body of fully developed turbulent shear flows remains essential, even at very large Reynolds numbers. Meanwhile, some incompleteness of the experimental data presented in the work of Nikuradze (1932) is noticed, namely the lack of data in the range of parameters where the difference between scaling law and universal logarithmic law predictions should be the largest.


1989 ◽  
Vol 1 (2) ◽  
pp. 294-301 ◽  
Author(s):  
Charles G. Speziale ◽  
Nessan Mac Giolla Mhuiris

2000 ◽  
Vol 415 ◽  
pp. 23-44 ◽  
Author(s):  
KATHLEEN M. TACINA ◽  
WERNER J. A. DAHM

We address the differences observed due to heat release between reacting and non-reacting versions of otherwise identical shear flows under conditions for which buoyancy effects are negligible. The differences considered here result from density changes produced by exothermic reaction, and are shown to be similar to those produced by free-stream density differences in non-reacting flows. The piecewise linear variations of temperature with mole fraction allow the density changes due to exothermic reaction to be related to an equivalent non-reacting flow, in which the temperature of one of the fluids is raised to an effective value determined by the peak temperature and overall stoichiometry. This leads to a general equivalence principle by which the scaling laws for non-reacting flows can be extended to predict effects of heat release by exothermic reaction. This equivalence principle is then applied to axisymmetric turbulent jets, where it leads to a generalized momentum diameter d+ in which the scaling laws for burning and non-burning jets become identical – it effectively extends the classical momentum diameter d* of Thring & Newby (1953) and Ricou & Spalding (1961) to exothermic reacting flows. The resulting predicted effects of heat release, in both the near and far fields, show good agreement with experimental data from momentum-dominated turbulent jet diffusion flames. The equivalence principle is then applied to planar turbulent jets, for which it also accurately predicts the observed effects of combustion heat release.


2020 ◽  
Vol 6 (28) ◽  
pp. eabb2012 ◽  
Author(s):  
Guangyin Jing ◽  
Andreas Zöttl ◽  
Éric Clément ◽  
Anke Lindner

Interaction of swimming bacteria with flows controls their ability to explore complex environments, crucial to many societal and environmental challenges and relevant for microfluidic applications such as cell sorting. Combining experimental, numerical, and theoretical analysis, we present a comprehensive study of the transport of motile bacteria in shear flows. Experimentally, we obtain with high accuracy and, for a large range of flow rates, the spatially resolved velocity and orientation distributions. They are in excellent agreement with the simulations of a kinematic model accounting for stochastic and microhydrodynamic properties and, in particular, the flagella chirality. Theoretical analysis reveals the scaling laws behind the average rheotactic velocity at moderate shear rates using a chirality parameter and explains the reorientation dynamics leading to saturation at large shear rates from the marginal stability of a fixed point. Our findings constitute a full understanding of the physical mechanisms and relevant parameters of bacteria bulk rheotaxis.


1994 ◽  
Vol 144 ◽  
pp. 185-187
Author(s):  
S. Orlando ◽  
G. Peres ◽  
S. Serio

AbstractWe have developed a detailed siphon flow model for coronal loops. We find scaling laws relating the characteristic parameters of the loop, explore systematically the space of solutions and show that supersonic flows are impossible for realistic values of heat flux at the base of the upflowing leg.


Sign in / Sign up

Export Citation Format

Share Document