Light and base metals

Keyword(s):  
2021 ◽  
Vol 26 ◽  
pp. 102150
Author(s):  
Dong-Cho Kim ◽  
Tomo Ogura ◽  
Ryosuke Hamada ◽  
Shotaro Yamashita ◽  
Kazuyoshi Saida

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 546
Author(s):  
Mateusz Ciszewski ◽  
Andrzej Chmielarz ◽  
Zbigniew Szołomicki ◽  
Michał Drzazga ◽  
Katarzyna Leszczyńska-Sejda

Industrial processing of mineral ores and concentrates generates large amounts of solid residues, which can be landfilled or further processed to recover selected elements depending on its economical profitability. Pressure leaching is a technology enabling high recovery of base metals like copper and zinc, transferring others like lead and iron to the solid residue. High temperature and pressure of such leaching leads to formation of sparingly soluble lead jarosite (plumbojarosite). The load of lead landfilled as solid residues resulting from such operation is so big that its recovery is perspective and crucial for waste-limiting technologies. This paper is devoted to lead extraction from pressure leaching residues using triethylenetetramine solution and then its precipitation as a commercial lead carbonate. The highest obtained recovery of lead was 91.3%. Additionally, presented technology allows to manage and recycle amine solution and reuse solid products. Produced pure lead carbonate can be directly added to smelting, not increasing temperature within the furnace.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1349 ◽  
Author(s):  
Arnar Guðmundsson ◽  
Jan-E. Bäckvall

Transition metal catalysis in modern organic synthesis has largely focused on noble transition metals like palladium, platinum and ruthenium. The toxicity and low abundance of these metals, however, has led to a rising focus on the development of the more sustainable base metals like iron, copper and nickel for use in catalysis. Iron is a particularly good candidate for this purpose due to its abundance, wide redox potential range, and the ease with which its properties can be tuned through the exploitation of its multiple oxidation states, electron spin states and redox potential. This is a fact made clear by all life on Earth, where iron is used as a cornerstone in the chemistry of living processes. In this mini review, we report on the general advancements in the field of iron catalysis in organic chemistry covering addition reactions, C-H activation, cross-coupling reactions, cycloadditions, isomerization and redox reactions.


2014 ◽  
Vol 69 (1) ◽  
Author(s):  
Hussain Zuhailawati ◽  
Emee Marina Salleh ◽  
Alaa Muhsin Saeed

Micro resistance spot welding of dissimilar materials is more challenging than that of similar materials due to differences in physical and chemical properties of the base metals. Fortunately, the incorporation of filler alloys at the interfaces of the two overlapped dissimilar metals can successfully overcome this difficulty. This study evaluated the mechanical behavior and microstructural characteristics of titanium-to-nickel spot-welded with and without the incorporation of 71Ag-28Cu-1Mg using round, rectangular and ring-shaped tip electrodes. Results showed that the round electrode gave the joints with the highest failure load and microhardness values since its highest current density produced a smaller contact area with the workpieces, causing the deepest penetration of the welded nugget. Addition of Ag-Cu-Mg alloy filler during spot welding improved weldability over that of joints made without filler. 


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1013
Author(s):  
Stefanie Gärtner

Alkali metal thallides go back to the investigative works of Eduard Zintl about base metals in negative oxidation states. In 1932, he described the crystal structure of NaTl as the first representative for this class of compounds. Since then, a bunch of versatile crystal structures has been reported for thallium as electronegative element in intermetallic solid state compounds. For combinations of thallium with alkali metals as electropositive counterparts, a broad range of different unique structure types has been observed. Interestingly, various thallium substructures at the same or very similar valence electron concentration (VEC) are obtained. This in return emphasizes that the role of the alkali metals on structure formation goes far beyond ancillary filling atoms, which are present only due to charge balancing reasons. In this review, the alkali metals are in focus and the local surroundings of the latter are discussed in terms of their crystallographic sites in the corresponding crystal structures.


2015 ◽  
Vol 158 ◽  
pp. 172-179 ◽  
Author(s):  
Pratima Meshram ◽  
B.D. Pandey ◽  
T.R. Mankhand
Keyword(s):  

Author(s):  
Guillaume Chas ◽  
Nathalie Rupa ◽  
Josseline Bourgoin ◽  
Astrid Hotellier ◽  
Se´bastien Saillet

By monitoring the irradiation-induced embrittlement of materials, the Pressure Vessel Surveillance Program (PVSP) contributes to the RPV integrity and lifetime assessments. This program is implemented on each PWR Unit in France; it is mainly based on Charpy tests, which are widely used in the nuclear industry to characterize the mechanical properties of the materials. Moreover, toughness tests are also carried out to check the conservatism of the PVSP methodology. This paper first describes the procedure followed for the Pressure Vessel Surveillance Program. It presents the irradiation capsules: the samples materials (low alloy Mn, Ni, Mo vessel steel including base metals, heat affected zones, welds and a reference material) and the mechanical tests performed. Then it draws up a synthesis of the analysis of about 180 capsules removed from the reactors at fluence levels up to 7.1019 n/cm2 (E > 1 MeV). This database gathers the results of more than 10,000 Charpy tests and 250 toughness tests. The experimental results confirm the conservatism of the Code-based methodology applied to the toughness assessment.


Sign in / Sign up

Export Citation Format

Share Document