scholarly journals Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality

Author(s):  
Long Huang ◽  
Pengfei Ma ◽  
Daren Meng ◽  
Lei Li ◽  
Rumao Tao ◽  
...  

An all-fiberized high-average-power narrow linewidth ns pulsed laser with linear polarization is demonstrated. The laser system utilizes a typical master oscillator power amplifier (MOPA) configuration. The stimulated Brillouin scattering (SBS) is effectively suppressed due to the short fiber length and large mode area in the main amplifier, combined with the narrow pulse duration smaller than the phonon lifetime of SBS effect. A maximal output power of 466 W is obtained with a narrow linewidth of ${\sim}$203.6 MHz, and the corresponding slope efficiency is ${\sim}$80.3%. The pulse duration is condensed to be ${\sim}$4 ns after the amplification, corresponding to the peak power of 8.8 kW and the pulse energy of $46.6~\unicode[STIX]{x03BC}\text{J}$. Near-diffraction-limited beam quality with an $M^{2}$ factor of 1.32 is obtained at the output power of 442 W and the mode instability (MI) is observed at the maximal output power. To the best of our knowledge, this is the highest average output power of the all-fiberized narrow linewidth ns pulsed fiber laser with linear polarization and high beam quality, which is a promising source for the nonlinear frequency conversion, laser lidar, and so on.

2013 ◽  
Vol 38 (22) ◽  
pp. 4686 ◽  
Author(s):  
A. Malinowski ◽  
P. Gorman ◽  
C. A. Codemard ◽  
F. Ghiringhelli ◽  
A. J. Boyland ◽  
...  

Author(s):  
Man Jiang ◽  
Pengfei Ma ◽  
Long Huang ◽  
Jiangming Xu ◽  
Pu Zhou ◽  
...  

In this manuscript, we demonstrate high-power, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme. By employing a single-mode–multimode–single-mode structure seed laser, a linearly polarized Yb-doped fiber laser with narrow linewidth and high output power is achieved. This laser, when used as a master oscillator, can be capable of suppressing the ASE in the process of power amplification. Thus, only one-stage amplification structure is used to scale up the laser power, and linearly polarized output with a polarization extinction ration of 14 dB, a narrow linewidth of 0.3 nm and an output power of 1018 W are achieved. Moreover, due to the good beam quality of seed laser and the well-designed amplifier stage, the beam quality of the output laser is near-diffraction-limited with $M_{x}^{2}\sim 1.18$ and $M_{y}^{2}\sim 1.24$ at the maximum power, and without mode instability occurring.


Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 15
Author(s):  
Mehmetcan Akbulut ◽  
Leonid Kotov ◽  
Kort Wiersma ◽  
Jie Zong ◽  
Maohe Li ◽  
...  

We report on an eye-safe, transform-limited, millijoule energy, and high average power fiber laser. The high gain and short length of the NP phosphate-glass fibers enable the SBS-free operation with kW level peak power. The output energy is up to 1.3 mJ, and the average power is up to 23 W at an 18 kHz repetition rate with 600 ns pulses (peak power > 2.1 kW). The PER is ≈16 dB and the M2 of the beam is 1.33 × 1.18. The coherent LIDAR Figure Of Merit (FOM) is 174 mJ*sqrt(Hz), which to our knowledge is the highest reported for a fiber laser. We also report 0.75 mJ energy and >3.7 kW peak power with down to 200 ns pulses and up to 1.21 mJ energy with a 3–5 kHz repetition rate operation of the current system.


CLEO: 2014 ◽  
2014 ◽  
Author(s):  
Yoann Zaouter ◽  
Florent Guichard ◽  
Robert Braunschweig ◽  
Marc Hanna ◽  
Franck Morin ◽  
...  

2012 ◽  
Vol 10 (5) ◽  
pp. 050604-50606 ◽  
Author(s):  
Wendi Wu Wendi Wu ◽  
Tingqi Ren Tingqi Ren ◽  
Jun Zhou Jun Zhou ◽  
Songtao Du Songtao Du ◽  
Xia Liu Xia Liu

Sign in / Sign up

Export Citation Format

Share Document