scholarly journals Effect of high slice energy spread of an electron beam on the generation of isolated, terawatt, attosecond X-ray free-electron laser pulse

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chi Hyun Shim ◽  
Yong Woon Parc ◽  
Dong Eon Kim
2018 ◽  
Vol 51 (3) ◽  
pp. 035602 ◽  
Author(s):  
Yu-Ping Sun ◽  
Quan Miao ◽  
Ai-Ping Zhou ◽  
Rui-Jin Liu ◽  
Bo Liu ◽  
...  

2017 ◽  
Vol 24 (5) ◽  
pp. 912-918 ◽  
Author(s):  
Norihiro Sei ◽  
Hiroshi Ogawa ◽  
Shuichi Okuda

The influence of higher-harmonic free-electron laser (FEL) oscillations on an electron beam have been studied by measuring its bunch length at the NIJI-IV storage ring. The bunch length and the lifetime of the electron beam were measured, and were observed to have become longer owing to harmonic lasing, which is in accord with the increase of the FEL gain. It was demonstrated that the saturated FEL power could be described by the theory of bunch heating, even for the harmonic lasing. Cavity-length detuning curves were measured for the harmonic lasing, and it was found that the width of the detuning curve was proportional to a parameter that depended on the bunch length. These experimental results will be useful for developing compact resonator-type FELs by using higher harmonics in the extreme-ultraviolet and the X-ray regions.


2007 ◽  
Vol 22 (23) ◽  
pp. 4270-4279
Author(s):  
A. BACCI ◽  
C. MAROLI ◽  
V. PETRILLO ◽  
L. SERAFNI ◽  
M. FERRARIO

The interaction between high-brilliance electron beams and counter-propagating laser pulses produces X rays via Thomson back-scattering. If the laser source is long and intense enough, the electrons of the beam can bunch and a regime of collective effects can establish. In this case of dominating collective effects, the FEL instability can develop and the system behaves like a free-electron laser based on an optical undulator. Coherent X-rays can be irradiated, with a bandwidth very much thinner than that of the corresponding incoherent emission. The emittance of the electron beam and the distribution of the laser energy are the principal quantities that limit the growth of the X-ray signal. In this work we analyse with a 3-D code the transverse effects in the emission produced by a relativistic electron beam when it is under the action of an optical laser pulse and the X-ray spectra obtained. The scalings typical of the optical wiggler, characterized by very short gain lengths and overall time durations of the process make possible considerable emission also with emittance of the order of 1mm mrad.


2017 ◽  
Vol 35 (2) ◽  
pp. 326-336 ◽  
Author(s):  
K. Zhukovsky ◽  
I. Potapov

AbstractThe generation of harmonics in two-frequency undulator in a self-amplified spontaneous emission free electron laser (SASE FEL) is studied in order to produce Roentgen radiation in a relatively compact sized installation. The dynamics of SASE FEL is analyzed with the help of the phenomenological model to obtain the maximum of the X-ray high-harmonic power. The model accounts for the properties of the undulator magnetic field and of the electron beam and includes the major sources of losses, such as the electron energy spread, etc. It is compared and calibrated with the existing data on a FEL experiment. The advantages of the two-frequency undulator for Roentgen SASE FEL are demonstrated and the possibility to generate powerful mild Roentgen radiation at already ~25 m length is shown. The evolution of the bunching coefficients for high harmonics is studied together with the evolution of the FEL-induced energy spread. The linear and non-linear regimes are explored for common and for two-frequency undulators The usage of the two-frequency undulator for cascade SASE FEL with high X-ray harmonic power and high-harmonic bunching coefficients with low-induced energy spread is proposed.


2021 ◽  
Vol 11 (22) ◽  
pp. 10768
Author(s):  
Ye Chen ◽  
Frank Brinker ◽  
Winfried Decking ◽  
Matthias Scholz ◽  
Lutz Winkelmann

Sub-ångström working regime refers to a working state of free-electron lasers which allows the generation of hard X-rays at a photon wavelength of 1 ångström and below, that is, a photon energy of 12.5 keV and above. It is demonstrated that the accelerators of the European X-ray Free-Electron Laser can provide highly energetic electron beams of up to 17.5 GeV. Along with long variable-gap undulators, the facility offers superior conditions for exploring self-amplified spontaneous emission (SASE) in the sub-ångström regime. However, the overall FEL performance relies quantitatively on achievable electron beam qualities through a kilometers-long accelerator beamline. Low-emittance electron beam production and the associated start-to-end beam physics thus becomes a prerequisite to dig in the potentials of SASE performance towards higher photon energies. In this article, we present the obtained results on electron beam qualities produced with different accelerating gradients of 40 MV/m–56 MV/m at the cathode, as well as the final beam qualities in front of the undulators via start-to-end simulations considering realistic conditions. SASE studies in the sub-ångström regime, using optimized electron beams, are carried out at varied energy levels according to the present state of the facility, that is, a pulsed mode operating with a 10 Hz-repetition 0.65 ms-long bunch train energized to 14 GeV and 17.5 GeV. Millijoule-level SASE intensity is obtained at a photon energy of 25 keV at 14 GeV electron beam energy using a gain length of about 7 m. At 17.5 GeV, half-millijoule lasing is achieved at 40 keV. Lasing at up to 50 keV is demonstrated with pulse energies in the range of a few hundreds and tens of microjoules with existing undulators and currently achievable electron beam qualities.


Sign in / Sign up

Export Citation Format

Share Document