Microbial bioburden of inpatient and outpatient areas beyond patient hospital rooms

Author(s):  
Jennifer L. Cadnum ◽  
Basya S. Pearlmutter ◽  
Annette L. Jencson ◽  
Hanan Haydar ◽  
Michelle T. Hecker ◽  
...  

Abstract Objective: To investigate the frequency of environmental contamination in hospital areas outside patient rooms and in outpatient healthcare facilities. Design: Culture survey. Setting: This study was conducted across 4 hospitals, 4 outpatient clinics, and 1 surgery center. Methods: We conducted 3 point-prevalence culture surveys for methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, Clostridioides difficile, Candida spp, and gram-negative bacilli including Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumanii, and Stenotrophomonas maltophilia in each facility. In hospitals, high-touch surfaces were sampled from radiology, physical therapy, and mobile equipment and in emergency departments, waiting rooms, clinics, and endoscopy facilities. In outpatient facilities, surfaces were sampled in exam rooms including patient and provider areas, patient bathrooms, and waiting rooms and from portable equipment. Fluorescent markers were placed on high-touch surfaces and removal was assessed 1 day later. Results: In the hospitals, 110 (9.4%) of 1,195 sites were positive for 1 or more bacterial pathogens (range, 5.3%–13.7% for the 4 hospitals) and 70 (5.9%) were positive for Candida spp (range, 3.7%–5.9%). In outpatient facilities, 31 of 485 (6.4%) sites were positive for 1 or more bacterial pathogens (range, 2% to 14.4% for the 5 outpatient facilities) and 50 (10.3%) were positive for Candida spp (range, 3.9%–23.3%). Fluorescent markers had been removed from 33% of sites in hospitals (range, 28.4%–39.7%) and 46.3% of sites in outpatient clinics (range, 7.4%–82.8%). Conclusions: Surfaces in hospitals outside patient rooms and in outpatient facilities are frequently contaminated with healthcare-associated pathogens. Improvements in cleaning and disinfection practices are needed to reduce contamination.

Author(s):  
Sarah N. Redmond ◽  
Basya S. Pearlmutter ◽  
Yilen K. Ng-Wong ◽  
Heba Alhmidi ◽  
Jennifer L. Cadnum ◽  
...  

Abstract Objective: To investigate the timing and routes of contamination of the rooms of patients newly admitted to the hospital. Design: Observational cohort study and simulations of pathogen transfer. Setting: A Veterans’ Affairs hospital. Participants: Patients newly admitted to the hospital with no known carriage of healthcare-associated pathogens. Methods: Interactions between the participants and personnel or portable equipment were observed, and cultures of high-touch surfaces, floors, bedding, and patients’ socks and skin were collected for up to 4 days. Cultures were processed for Clostridioides difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE). Simulations were conducted with bacteriophage MS2 to assess plausibility of transfer from contaminated floors to high-touch surfaces and to assess the effectiveness of wearing slippers in reducing transfer. Results: Environmental cultures became positive for at least 1 pathogen in 10 (59%) of the 17 rooms, with cultures positive for MRSA, C. difficile, and VRE in the rooms of 10 (59%), 2 (12%), and 2 (12%) participants, respectively. For all 14 instances of pathogen detection, the initial site of recovery was the floor followed in a subset of patients by detection on sock bottoms, bedding, and high-touch surfaces. In simulations, wearing slippers over hospital socks dramatically reduced transfer of bacteriophage MS2 from the floor to hands and to high-touch surfaces. Conclusions: Floors may be an underappreciated source of pathogen dissemination in healthcare facilities. Simple interventions such as having patients wear slippers could potentially reduce the risk for transfer of pathogens from floors to hands and high-touch surfaces.


2020 ◽  
Author(s):  
Carine A. Nkemngong ◽  
Gurpreet K. Chaggar ◽  
Xiaobao Li ◽  
Peter J. Teska ◽  
Haley F Oliver

Abstract Background: Pre-wetted disinfectant wipes are increasingly being used in healthcare facilities to help address the risk of healthcare associated infections (HAI). However, HAIs are still a major problem in the US with Clostridioides difficile being the most common cause, leading to approximately 12,800 deaths annually in the US. An underexplored risk when using disinfectant wipes is that they may cross-contaminate uncontaminated surfaces during the wiping process. The objective of this study was to determine the cross-contamination risk that pre-wetted disinfectant towelettes may pose when challenged with C. difficile spores. We hypothesized that although the tested disinfectant wipes had no sporicidal claims, they will reduce spore loads. We also hypothesized that hydrogen peroxide disinfectant towelettes would present a lower cross-contamination risk than quaternary ammonium products. Methods: We evaluated the risk of cross-contamination when disinfectant wipes are challenged with C. difficile ATCC 43598 spores on Formica surfaces. A disinfectant wipe was used to wipe a Formica sheet inoculated with C. difficile. After the wiping process, we determined log10 CFU on previously uncontaminated pre-determined distances from the inoculation point and on the used wipes. Results: We found that the disinfectant wipes transferred C. difficile spores from inoculated surfaces to previously uncontaminated surfaces. We also found that wipes physically removed C. difficile spores and that hydrogen peroxide disinfectants were more sporicidal than the quaternary ammonium disinfectants. Conclusion: Regardless of the product type, all disinfectant wipes had some sporicidal effect but transferred C. difficile spores from contaminated to otherwise previously uncontaminated surfaces. Disinfectant wipes retain C. difficile spores during and after the wiping process.


Nano LIFE ◽  
2019 ◽  
Vol 09 (04) ◽  
pp. 1950002
Author(s):  
Phillip Strader ◽  
Younghwan Lee ◽  
Peter Teska ◽  
Xiaobao Li ◽  
Jacob L. Jones

Healthcare-Associated Infections (HAIs) are a significant cause of morbidity and mortality and occur in many healthcare facilities including hospitals, surgery centers and long-term care facilities. It is well known that some pathogens can persist on healthcare surfaces for weeks to months and spread readily to new surfaces. It is current practice to disinfect or clean surfaces routinely in order to reduce the risk of HAIs. However, routine cleaning can damage the surface chemically or mechanically, which may actually increase the surface contamination. Fundamental knowledge is therefore needed to understand the influence of cleaning and disinfection on healthcare surfaces in order to mitigate pathogen persistence. In this study, materials and objects found in healthcare facilities were selected and exposed to disinfection procedures including wiping and soaking with readily available chemical disinfectants. A variety of chemical disinfectants were selected which contain hydrogen peroxide, quaternary ammonia, and chlorine, respectively. Optical microscopy, contact angle measurement, atomic force microscopy (AFM), Fourier Transform Infrared (FTIR) spectroscopy and nanoindentation are used to analyze surface characteristics before and after disinfection in order to study the effect of disinfection on material properties. Disinfection procedures are found to cause changes to surface properties of materials and objects which can be detected and observed or quantified by the approaches used in this study. The methods should become regular practice in the studies of healthcare surfaces and their role in HAIs. Each method in this study may not be reliably applied to every object or disinfection scenario. Sample geometry and features may influence response during measurement and affect results. The combination of the approaches is able to sufficiently characterize chemical, mechanical, and topological changes to the surface.


2020 ◽  
Author(s):  
Carine A. Nkemngong ◽  
Gurpreet K. Chaggar ◽  
Xiaobao Li ◽  
Peter J. Teska ◽  
Haley F Oliver

Abstract Background: Pre-wetted disinfectant wipes are increasingly being used in healthcare facilities to help address the risk of healthcare associated infections (HAI). However, HAIs are still a major problem in the US with Clostridioides difficile being the most common cause, leading to approximately 12,800 deaths annually in the US. An underexplored risk when using disinfectant wipes is that they may cross-contaminate uncontaminated surfaces during the wiping process. The objective of this study was to determine the cross-contamination risk that pre-wetted disinfectant towelettes may pose when challenged with C. difficile spores. We hypothesized that although the tested disinfectant wipes had no sporicidal claims, they will reduce spore loads. We also hypothesized that hydrogen peroxide disinfectant towelettes would present a lower cross-contamination risk than quaternary ammonium products. Methods: We evaluated the risk of cross-contamination when disinfectant wipes are challenged with C. difficile ATCC 43598 spores on Formica surfaces. A disinfectant wipe was used to wipe a Formica sheet inoculated with C. difficile. After the wiping process, we determined log10 CFU on previously uncontaminated pre-determined distances from the inoculation point and on the used wipes. Results: We found that the disinfectant wipes transferred C. difficile spores from inoculated surfaces to previously uncontaminated surfaces. We also found that wipes physically removed C. difficile spores and that hydrogen peroxide disinfectants were more sporicidal than the quaternary ammonium disinfectants. Conclusion: Regardless of the product type, all disinfectant wipes had some sporicidal effect but transferred C. difficile spores from contaminated to otherwise previously uncontaminated surfaces. Disinfectant wipes retain C. difficile spores during and after the wiping process.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261588
Author(s):  
Laura J. Rose ◽  
Hollis Houston ◽  
Marla Martinez-Smith ◽  
Amanda K. Lyons ◽  
Carrie Whitworth ◽  
...  

Results from sampling healthcare surfaces for pathogens are difficult to interpret without understanding the factors that influence pathogen detection. We investigated the recovery of four healthcare-associated pathogens from three common surface materials, and how a body fluid simulant (artificial test soil, ATS), deposition method, and contamination levels influence the percent of organisms recovered (%R). Known quantities of carbapenemase-producing KPC+ Klebsiella pneumoniae (KPC), Acinetobacter baumannii, vancomycin-resistant Enterococcus faecalis, and Clostridioides difficile spores (CD) were suspended in Butterfield’s buffer or ATS, deposited on 323cm2 steel, plastic, and laminate surfaces, allowed to dry 1h, then sampled with a cellulose sponge wipe. Bacteria were eluted, cultured, CFU counted and %R determined relative to the inoculum. The %R varied by organism, from <1% (KPC) to almost 60% (CD) and was more dependent upon the organism’s characteristics and presence of ATS than on surface type. KPC persistence as determined by culture also declined by >1 log10 within the 60 min drying time. For all organisms, the %R was significantly greater if suspended in ATS than if suspended in Butterfield’s buffer (p<0.05), and for most organisms the %R was not significantly different when sampled from any of the three surfaces. Organisms deposited in multiple droplets were recovered at equal or higher %R than if spread evenly on the surface. This work assists in interpreting data collected while investigating a healthcare infection outbreak or while conducting infection intervention studies.


Author(s):  
Carine A. Nkemngong ◽  
Gurpreet K. Chaggar ◽  
Xiaobao Li ◽  
Peter J. Teska ◽  
Haley F. Oliver

Abstract Background Pre-wetted disinfectant wipes are increasingly being used in healthcare facilities to help address the risk of healthcare associated infections (HAIs). However, HAIs are still a major problem in the US with Clostridioides difficile being the most common cause, leading to approximately 12,800 deaths annually in the US. An underexplored risk when using disinfectant wipes is that they may cross-contaminate uncontaminated surfaces during the wiping process. The objective of this study was to determine the cross-contamination risk that pre-wetted disinfectant towelettes may pose when challenged with C. difficile spores. We hypothesized that although the tested disinfectant wipes had no sporicidal claims, they will reduce spore loads. We also hypothesized that hydrogen peroxide disinfectant towelettes would present a lower cross-contamination risk than quaternary ammonium products. Methods We evaluated the risk of cross-contamination when disinfectant wipes are challenged with C. difficile ATCC 43598 spores on Formica surfaces. A disinfectant wipe was used to wipe a Formica sheet inoculated with C. difficile. After the wiping process, we determined log10 CFU on previously uncontaminated pre-determined distances from the inoculation point and on the used wipes. Results We found that the disinfectant wipes transferred C. difficile spores from inoculated surfaces to previously uncontaminated surfaces. We also found that wipes physically removed C. difficile spores and that hydrogen peroxide disinfectants were more sporicidal than the quaternary ammonium disinfectants. Conclusion Regardless of the product type, all disinfectant wipes had some sporicidal effect but transferred C. difficile spores from contaminated to otherwise previously uncontaminated surfaces. Disinfectant wipes retain C. difficile spores during and after the wiping process.


2011 ◽  
Vol 32 (7) ◽  
pp. 687-699 ◽  
Author(s):  
Jonathan A. Otter ◽  
Saber Yezli ◽  
Gary L. French

Studies in the 1970s and 1980s suggested that environmental surface contamination played a negligible role in the endemic transmission of healthcare-associated infections. However, recent studies have demonstrated that several major nosocomial pathogens are shed by patients and contaminate hospital surfaces at concentrations sufficient for transmission, survive for extended periods, persist despite attempts to disinfect or remove them, and can be transferred to the hands of healthcare workers. Evidence is accumulating that contaminated surfaces make an important contribution to the epidemic and endemic transmission ofClostridium difficile,vancomycin-resistant enterococci, methicillin-resistantStaphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa,and norovirus and that improved environmental decontamination contributes to the control of outbreaks. Efforts to improve environmental hygiene should include enhancing the efficacy of cleaning and disinfection and reducing the shedding of pathogens. Further high-quality studies are needed to clarify the role played by surfaces in nosocomial transmission and to determine the effectiveness of different interventions in reducing associated infection rates.


2020 ◽  
Author(s):  
Carine A. Nkemngong ◽  
Gurpreet K. Chaggar ◽  
Xiaobao Li ◽  
Peter J. Teska ◽  
Haley F Oliver

Abstract Background: Pre-wetted disinfectant wipes are increasingly being used in healthcare facilities to help address the risk of healthcare associated infections (HAI). However, HAIs are still a major problem in the US with Clostridioides difficile being the most common cause, leading to approximately 12,800 deaths annually in the US. An underexplored risk when using disinfectant wipes is that they may cross-contaminate uncontaminated surfaces during the wiping process. The objective of this study was to determine the cross-contamination risk that pre-wetted disinfectant towelettes may pose when challenged with C. difficile spores. We hypothesized that although the tested disinfectant wipes had no sporicidal claims, they will reduce spore loads. We also hypothesized that hydrogen peroxide disinfectant towelettes would present a lower cross-contamination risk than quaternary ammonium products. Methods: We evaluated the risk of cross-contamination when disinfectant wipes are challenged with C. difficile ATCC 43598 spores on Formica surfaces. A disinfectant wipe was used to wipe a Formica sheet inoculated with C. difficile . After the wiping process, we determined log 10 CFU on previously uncontaminated pre-determined distances from the inoculation point and on the used wipes. Results: We found that the disinfectant wipes transferred C. difficile spores from inoculated surfaces to previously uncontaminated surfaces. We also found that wipes physically removed C. difficile spores and that hydrogen peroxide disinfectants were more sporicidal than the quaternary ammonium disinfectants. Conclusion: Regardless of the product type, all disinfectant wipes had some sporicidal effect but transferred C. difficile spores from contaminated to otherwise previously uncontaminated surfaces. Disinfectant wipes retain C. difficile spores during and after the wiping process.


Sign in / Sign up

Export Citation Format

Share Document