scholarly journals Disinfectant Wipes Transfer Clostridioides difficile Spores from Contaminated Surfaces to Uncontaminated Surfaces during the Disinfection Process

2020 ◽  
Author(s):  
Carine A. Nkemngong ◽  
Gurpreet K. Chaggar ◽  
Xiaobao Li ◽  
Peter J. Teska ◽  
Haley F Oliver

Abstract Background: Pre-wetted disinfectant wipes are increasingly being used in healthcare facilities to help address the risk of healthcare associated infections (HAI). However, HAIs are still a major problem in the US with Clostridioides difficile being the most common cause, leading to approximately 12,800 deaths annually in the US. An underexplored risk when using disinfectant wipes is that they may cross-contaminate uncontaminated surfaces during the wiping process. The objective of this study was to determine the cross-contamination risk that pre-wetted disinfectant towelettes may pose when challenged with C. difficile spores. We hypothesized that although the tested disinfectant wipes had no sporicidal claims, they will reduce spore loads. We also hypothesized that hydrogen peroxide disinfectant towelettes would present a lower cross-contamination risk than quaternary ammonium products. Methods: We evaluated the risk of cross-contamination when disinfectant wipes are challenged with C. difficile ATCC 43598 spores on Formica surfaces. A disinfectant wipe was used to wipe a Formica sheet inoculated with C. difficile. After the wiping process, we determined log10 CFU on previously uncontaminated pre-determined distances from the inoculation point and on the used wipes. Results: We found that the disinfectant wipes transferred C. difficile spores from inoculated surfaces to previously uncontaminated surfaces. We also found that wipes physically removed C. difficile spores and that hydrogen peroxide disinfectants were more sporicidal than the quaternary ammonium disinfectants. Conclusion: Regardless of the product type, all disinfectant wipes had some sporicidal effect but transferred C. difficile spores from contaminated to otherwise previously uncontaminated surfaces. Disinfectant wipes retain C. difficile spores during and after the wiping process.

2020 ◽  
Author(s):  
Carine A. Nkemngong ◽  
Gurpreet K. Chaggar ◽  
Xiaobao Li ◽  
Peter J. Teska ◽  
Haley F Oliver

Abstract Background: Pre-wetted disinfectant wipes are increasingly being used in healthcare facilities to help address the risk of healthcare associated infections (HAI). However, HAIs are still a major problem in the US with Clostridioides difficile being the most common cause, leading to approximately 12,800 deaths annually in the US. An underexplored risk when using disinfectant wipes is that they may cross-contaminate uncontaminated surfaces during the wiping process. The objective of this study was to determine the cross-contamination risk that pre-wetted disinfectant towelettes may pose when challenged with C. difficile spores. We hypothesized that although the tested disinfectant wipes had no sporicidal claims, they will reduce spore loads. We also hypothesized that hydrogen peroxide disinfectant towelettes would present a lower cross-contamination risk than quaternary ammonium products. Methods: We evaluated the risk of cross-contamination when disinfectant wipes are challenged with C. difficile ATCC 43598 spores on Formica surfaces. A disinfectant wipe was used to wipe a Formica sheet inoculated with C. difficile. After the wiping process, we determined log10 CFU on previously uncontaminated pre-determined distances from the inoculation point and on the used wipes. Results: We found that the disinfectant wipes transferred C. difficile spores from inoculated surfaces to previously uncontaminated surfaces. We also found that wipes physically removed C. difficile spores and that hydrogen peroxide disinfectants were more sporicidal than the quaternary ammonium disinfectants. Conclusion: Regardless of the product type, all disinfectant wipes had some sporicidal effect but transferred C. difficile spores from contaminated to otherwise previously uncontaminated surfaces. Disinfectant wipes retain C. difficile spores during and after the wiping process.


Author(s):  
Carine A. Nkemngong ◽  
Gurpreet K. Chaggar ◽  
Xiaobao Li ◽  
Peter J. Teska ◽  
Haley F. Oliver

Abstract Background Pre-wetted disinfectant wipes are increasingly being used in healthcare facilities to help address the risk of healthcare associated infections (HAIs). However, HAIs are still a major problem in the US with Clostridioides difficile being the most common cause, leading to approximately 12,800 deaths annually in the US. An underexplored risk when using disinfectant wipes is that they may cross-contaminate uncontaminated surfaces during the wiping process. The objective of this study was to determine the cross-contamination risk that pre-wetted disinfectant towelettes may pose when challenged with C. difficile spores. We hypothesized that although the tested disinfectant wipes had no sporicidal claims, they will reduce spore loads. We also hypothesized that hydrogen peroxide disinfectant towelettes would present a lower cross-contamination risk than quaternary ammonium products. Methods We evaluated the risk of cross-contamination when disinfectant wipes are challenged with C. difficile ATCC 43598 spores on Formica surfaces. A disinfectant wipe was used to wipe a Formica sheet inoculated with C. difficile. After the wiping process, we determined log10 CFU on previously uncontaminated pre-determined distances from the inoculation point and on the used wipes. Results We found that the disinfectant wipes transferred C. difficile spores from inoculated surfaces to previously uncontaminated surfaces. We also found that wipes physically removed C. difficile spores and that hydrogen peroxide disinfectants were more sporicidal than the quaternary ammonium disinfectants. Conclusion Regardless of the product type, all disinfectant wipes had some sporicidal effect but transferred C. difficile spores from contaminated to otherwise previously uncontaminated surfaces. Disinfectant wipes retain C. difficile spores during and after the wiping process.


2020 ◽  
Author(s):  
Carine A. Nkemngong ◽  
Gurpreet K. Chaggar ◽  
Xiaobao Li ◽  
Peter J. Teska ◽  
Haley F Oliver

Abstract Background: Pre-wetted disinfectant wipes are increasingly being used in healthcare facilities to help address the risk of healthcare associated infections (HAI). However, HAIs are still a major problem in the US with Clostridioides difficile being the most common cause, leading to approximately 12,800 deaths annually in the US. An underexplored risk when using disinfectant wipes is that they may cross-contaminate uncontaminated surfaces during the wiping process. The objective of this study was to determine the cross-contamination risk that pre-wetted disinfectant towelettes may pose when challenged with C. difficile spores. We hypothesized that although the tested disinfectant wipes had no sporicidal claims, they will reduce spore loads. We also hypothesized that hydrogen peroxide disinfectant towelettes would present a lower cross-contamination risk than quaternary ammonium products. Methods: We evaluated the risk of cross-contamination when disinfectant wipes are challenged with C. difficile ATCC 43598 spores on Formica surfaces. A disinfectant wipe was used to wipe a Formica sheet inoculated with C. difficile . After the wiping process, we determined log 10 CFU on previously uncontaminated pre-determined distances from the inoculation point and on the used wipes. Results: We found that the disinfectant wipes transferred C. difficile spores from inoculated surfaces to previously uncontaminated surfaces. We also found that wipes physically removed C. difficile spores and that hydrogen peroxide disinfectants were more sporicidal than the quaternary ammonium disinfectants. Conclusion: Regardless of the product type, all disinfectant wipes had some sporicidal effect but transferred C. difficile spores from contaminated to otherwise previously uncontaminated surfaces. Disinfectant wipes retain C. difficile spores during and after the wiping process.


Author(s):  
Jennifer L. Cadnum ◽  
Basya S. Pearlmutter ◽  
Annette L. Jencson ◽  
Hanan Haydar ◽  
Michelle T. Hecker ◽  
...  

Abstract Objective: To investigate the frequency of environmental contamination in hospital areas outside patient rooms and in outpatient healthcare facilities. Design: Culture survey. Setting: This study was conducted across 4 hospitals, 4 outpatient clinics, and 1 surgery center. Methods: We conducted 3 point-prevalence culture surveys for methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, Clostridioides difficile, Candida spp, and gram-negative bacilli including Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumanii, and Stenotrophomonas maltophilia in each facility. In hospitals, high-touch surfaces were sampled from radiology, physical therapy, and mobile equipment and in emergency departments, waiting rooms, clinics, and endoscopy facilities. In outpatient facilities, surfaces were sampled in exam rooms including patient and provider areas, patient bathrooms, and waiting rooms and from portable equipment. Fluorescent markers were placed on high-touch surfaces and removal was assessed 1 day later. Results: In the hospitals, 110 (9.4%) of 1,195 sites were positive for 1 or more bacterial pathogens (range, 5.3%–13.7% for the 4 hospitals) and 70 (5.9%) were positive for Candida spp (range, 3.7%–5.9%). In outpatient facilities, 31 of 485 (6.4%) sites were positive for 1 or more bacterial pathogens (range, 2% to 14.4% for the 5 outpatient facilities) and 50 (10.3%) were positive for Candida spp (range, 3.9%–23.3%). Fluorescent markers had been removed from 33% of sites in hospitals (range, 28.4%–39.7%) and 46.3% of sites in outpatient clinics (range, 7.4%–82.8%). Conclusions: Surfaces in hospitals outside patient rooms and in outpatient facilities are frequently contaminated with healthcare-associated pathogens. Improvements in cleaning and disinfection practices are needed to reduce contamination.


Author(s):  
Sarah N. Redmond ◽  
Basya S. Pearlmutter ◽  
Yilen K. Ng-Wong ◽  
Heba Alhmidi ◽  
Jennifer L. Cadnum ◽  
...  

Abstract Objective: To investigate the timing and routes of contamination of the rooms of patients newly admitted to the hospital. Design: Observational cohort study and simulations of pathogen transfer. Setting: A Veterans’ Affairs hospital. Participants: Patients newly admitted to the hospital with no known carriage of healthcare-associated pathogens. Methods: Interactions between the participants and personnel or portable equipment were observed, and cultures of high-touch surfaces, floors, bedding, and patients’ socks and skin were collected for up to 4 days. Cultures were processed for Clostridioides difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE). Simulations were conducted with bacteriophage MS2 to assess plausibility of transfer from contaminated floors to high-touch surfaces and to assess the effectiveness of wearing slippers in reducing transfer. Results: Environmental cultures became positive for at least 1 pathogen in 10 (59%) of the 17 rooms, with cultures positive for MRSA, C. difficile, and VRE in the rooms of 10 (59%), 2 (12%), and 2 (12%) participants, respectively. For all 14 instances of pathogen detection, the initial site of recovery was the floor followed in a subset of patients by detection on sock bottoms, bedding, and high-touch surfaces. In simulations, wearing slippers over hospital socks dramatically reduced transfer of bacteriophage MS2 from the floor to hands and to high-touch surfaces. Conclusions: Floors may be an underappreciated source of pathogen dissemination in healthcare facilities. Simple interventions such as having patients wear slippers could potentially reduce the risk for transfer of pathogens from floors to hands and high-touch surfaces.


2019 ◽  
Vol 111 ◽  
pp. 04046
Author(s):  
Răzvan Bucureşteanu ◽  
Roxana Apetrei ◽  
Monica Ioniţă ◽  
Ludmila-Otilia Cinteză ◽  
Lia-Mara Diţu ◽  
...  

An ever-increasing rate of morbidity and mortality caused by healthcare associated infections is reported annually. Air circulation mediates contact with microbial contaminated aerosols and represents a major risk of transmitting healthcare associated infections. We propose a revolutionary technique for the protection of interior surfaces based on a photocatalytic composition with doped TiO2 or ZnO type semiconductor metal oxides which exert antimicrobial effect. In principle, there is an activation of the photocatalytic coating with light from the normal lighting apparatus, which may incorporate one or more sources of photocatalytic excitation light. By studying the air circulation in the hospital, it is possible to design light fixtures with specific design of light distribution, in order to perform the disinfection of the air and surfaces and to amplify the antimicrobial effect. The disinfection process does not affect patients or healthcare professionals, it can be done in their presence and has a continuous, controllable effect. Photocatalytic paint in combination with a prototype luminaire with a precise spectrum light sources, light output and a light intensity distribution curve relative to the shape and dimensions of the rooms, shows that the proposed method may represent a successful alternative to classical methods of disinfection in hospitals. This technique can also be used in other areas of interest.


2016 ◽  
Vol 42 (2-3) ◽  
pp. 393-428
Author(s):  
Ann Marie Marciarille

The narrative of Ebola's arrival in the United States has been overwhelmed by our fear of a West African-style epidemic. The real story of Ebola's arrival is about our healthcare system's failure to identify, treat, and contain healthcare associated infections. Having long been willfully ignorant of the path of fatal infectious diseases through our healthcare facilities, this paper considers why our reimbursement and quality reporting systems made it easy for this to be so. West Africa's challenges in controlling Ebola resonate with our own struggles to standardize, centralize, and enforce infection control procedures in American healthcare facilities.


Author(s):  
Robert J. Clifford ◽  
Donna Newhart ◽  
Maryrose R. Laguio-Vila ◽  
Jennifer L. Gutowski ◽  
Melissa Z. Bronstein ◽  
...  

Abstract Objective: To quantitatively evaluate relationships between infection preventionists (IPs) staffing levels, nursing hours, and rates of 10 types of healthcare-associated infections (HAIs). Design and setting: An ambidirectional observation in a 528-bed teaching hospital. Patients: All inpatients from July 1, 2012, to February 1, 2021. Methods: Standardized US National Health Safety Network (NHSN) definitions were used for HAIs. Staffing levels were measured in full-time equivalents (FTE) for IPs and total monthly hours worked for nurses. A time-trend analysis using control charts, t tests, Poisson tests, and regression analysis was performed using Minitab and R computing programs on rates and standardized infection ratios (SIRs) of 10 types of HAIs. An additional analysis was performed on 3 stratifications: critically low (2–3 FTE), below recommended IP levels (4–6 FTE), and at recommended IP levels (7–8 FTE). Results: The observation covered 1.6 million patient days of surveillance. IP staffing levels fluctuated from ≤2 IP FTE (critically low) to 7–8 IP FTE (recommended levels). Periods of highest catheter-associated urinary tract infection SIRs, hospital-onset Clostridioides difficile and carbapenem-resistant Enterobacteriaceae infection rates, along with 4 of 5 types of surgical site SIRs coincided with the periods of lowest IP staffing levels and the absence of certified IPs and a healthcare epidemiologist. Central-line–associated bloodstream infections increased amid lower nursing levels despite the increased presence of an IP and a hospital epidemiologist. Conclusions: Of 10 HAIs, 8 had highest incidences during periods of lowest IP staffing and experience. Some HAI rates varied inversely with levels of IP staffing and experience and others appeared to be more influenced by nursing levels or other confounders.


2012 ◽  
Vol 22 (12) ◽  
pp. 383-388
Author(s):  
Angela Cobbold ◽  
Sue Lord

In the United States, approximately 46.5 million surgical and medical procedures, including approximately 5 million gastrointestinal endoscopies are performed annually (Rutala & Weber 2008). In contrast, there are some 4.2 million surgical operations carried out annually in England (RCS 2012). The majority of these procedures involve patient contact with reusable invasive medical devices (RIMDs). Over the past 15 years, there have been significant changes in guidance and legislation relating to decontamination processes, mainly resulting from the focus on variant Creutzfeldt-Jakob disease (vCJD) (NSH 2001, DH 2003) and the need to tackle increasing problems with healthcare associated infections (HCAIs). Therefore, with approximately 350 NHS hospitals in England alone (RCS 2012), there is potential for a major risk of cross contamination for patients and staff.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 667
Author(s):  
Claire Hayward ◽  
Kirstin E. Ross ◽  
Melissa H. Brown ◽  
Harriet Whiley

Healthcare-associated infections (HAIs) are one of the most common patient complications, affecting 7% of patients in developed countries each year. The rise of antimicrobial resistant (AMR) bacteria has been identified as one of the biggest global health challenges, resulting in an estimated 23,000 deaths in the US annually. Environmental reservoirs for AMR bacteria such as bed rails, light switches and doorknobs have been identified in the past and addressed with infection prevention guidelines. However, water and water-related devices are often overlooked as potential sources of HAI outbreaks. This systematic review examines the role of water and water-related devices in the transmission of AMR bacteria responsible for HAIs, discussing common waterborne devices, pathogens, and surveillance strategies. AMR strains of previously described waterborne pathogens including Pseudomonas aeruginosa, Mycobacterium spp., and Legionella spp. were commonly isolated. However, methicillin-resistant Staphylococcus aureus and carbapenem-resistant Enterobacteriaceae that are not typically associated with water were also isolated. Biofilms were identified as a hot spot for the dissemination of genes responsible for survival functions. A limitation identified was a lack of consistency between environmental screening scope, isolation methodology, and antimicrobial resistance characterization. Broad universal environmental surveillance guidelines must be developed and adopted to monitor AMR pathogens, allowing prediction of future threats before waterborne infection outbreaks occur.


Sign in / Sign up

Export Citation Format

Share Document