scholarly journals Subgrid-scale models and large-eddy simulation of oxygen stream disintegration and mixing with a hydrogen or helium stream at supercritical pressure

2011 ◽  
Vol 679 ◽  
pp. 156-193 ◽  
Author(s):  
EZGI S. TAŞKINOĞLU ◽  
JOSETTE BELLAN

For flows at supercritical pressure, p, the large-eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas equation of state, and the equations utilize transport properties depending on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid-scale (SGS) fluxes but also new SGS terms, each denoted as a ‘correction’. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations and represent differences, other than contributed by the convection terms, between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) which is the difference between the filtered divergence of the molecular heat flux and the divergence of the molecular heat flux computed as a function of the filtered flow field. We revisit here a previous a priori study where we only had partial success in modelling the q-correction term and show that success can be achieved using a different modelling approach. This a priori analysis, based on a temporal mixing-layer direct numerical simulation database, shows that the focus in modelling the q-correction should be on reconstructing the primitive variable gradients rather than their coefficients, and proposes the approximate deconvolution model (ADM) as an effective means of flow field reconstruction for LES molecular heat-flux calculation. Furthermore, an a posteriori study is conducted for temporal mixing layers initially containing oxygen (O) in the lower stream and hydrogen (H) or helium (He) in the upper stream to examine the benefit of the new model. Results show that for any LES including SGS-flux models (constant-coefficient gradient or scale-similarity models; dynamic-coefficient Smagorinsky/Yoshizawa or mixed Smagorinsky/Yoshizawa/gradient models), the inclusion of the q-correction in LES leads to the theoretical maximum reduction of the SGS molecular heat-flux difference; the remaining error in modelling this new subgrid term is thus irreducible. The impact of the q-correction model first on the molecular heat flux and then on the mean, fluctuations, second-order correlations and spatial distribution of dependent variables is also demonstrated. Discussions on the utilization of the models in general LES are presented.

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Wei Cai ◽  
Yuan Li ◽  
Xingzhong Li ◽  
Chunbao Liu

Large eddy simulation (LES) with various subgrid-scale (SGS) models was introduced to numerically calculate the transient flow of the hydraulic coupling. By using LES, the study aimed to advance description ability of internal flow and performance prediction. The CFD results were verified by experimental data. For the purpose of the description of the flow field, six subgrid-scale models for LES were employed to depict the flow field; the distribution structure of flow field was legible. Moreover, the flow mechanism was analyzed using 3D vortex structures, and those showed that DSL and KET captured abundant vortex structures and provided a relatively moderate eddy viscosity in the chamber. The predicted values of the braking torque for hydraulic coupling were compared with experimental data. The comparison results were compared with several simulation models, such as SAS and RKE, and SSTKW models. Those comparison results showed that the SGS models, especially DSL and KET, were applicable to obtain the more accurate predicted results than SAS and RKE, and SSTKW models. Clearly, the predicted results of LES with DSL and KET were far more accurate than the previous studies. The performance prediction was significantly improved.


2008 ◽  
Vol 604 ◽  
pp. 125-163 ◽  
Author(s):  
BING-CHEN WANG ◽  
EUGENE YEE ◽  
DONALD J. BERGSTROM ◽  
OAKI IIDA

Three new dynamic tensor thermal diffusivity subgrid-scale (SGS) heat flux (HF) models are proposed for large-eddy simulation of thermal convection. The constitutive relations for the proposed modelling approaches represent the most general explicit algebraic formulations possible for the family of SGS HF models constructed using the resolved temperature gradient and SGS stress tensor. As a result, these three new models include a number of previously proposed dynamic SGS HF models as special cases. In contrast to the classical dynamic eddy thermal diffusivity SGS HF model, which strictly requires the SGS heat flux be aligned with the negative of the resolved temperature gradient, the three new models proposed here admit more degrees of freedom, and consequently provide a more realistic geometrical and physical representation of the SGS HF vector. To validate the proposed models, numerical simulations have been performed based on two benchmark test cases of neutrally and unstably stratified horizontal channel flows.


Author(s):  
Hao Zhou ◽  
Qijing Feng ◽  
Pengcheng Hao ◽  
Zhiwei He ◽  
Li Li

This paper focuses on large eddy simulation of the Richtmyer–Meshkov instability (RMI) in spherical and cylindrical converging geometries with a Mach number [Formula: see text] based on subgrid-scale (SGS) dissipation similar method (SDSM). Based on the converging RMI problem, we obtain from a priori test and theoretical analysis that the suggested method can provide accurate structural correlation while ensuring the computational stability. Comparing the numerical simulation results with direct numerical simulation (DNS) and existing model in converging RMI problem, we could find that the suggested method overcomes some defects of the existing model, such as the Smagorinsky model cannot predict transition accurately and the helicity model can only predicts the quasi-two-dimensional flow precisely. It provides a beneficial tool for the research of converging RMI.


Author(s):  
Alexej Pogorelov ◽  
Matthias Meinke ◽  
Wolfgang Schröder

The flow field in a complete one-stage axial-flow turbine with 30 stator and 62 rotor blades is investigated by large-eddy simulation (LES). To solve the compressible Navier-Stokes equations, a massively parallelized finite-volume flow solver based on an efficient Cartesian cut-cell/level-set approach, which ensures a strict conservation of mass, momentum and energy, is used. This numerical method contains two adaptive Cartesian meshes, one mesh to track the embedded surface boundaries and a second mesh to resolve the fluid domain and to solve the conservation equations. The overall approach allows large scale simulations of turbomachinery applications with multiple relatively moving boundaries in a single frame of reference. The relative motion of the geometries is described by a kinematic motion level-set interface method. The focus of the numerical analysis is on the flow inside the cavity between the stator and the rotor disks. Full 360° computations of the turbine stage with a single lip rim seal geometry are conducted. First, the impact of the mesh resolution on the LES results is analyzed. Second, the LES results are compared to experimental data, followed by a detailed analysis of the flow field inside the rotor-stator wheel space. A dominant mode unrelated to the rotor frequency and its harmonics is identified, which shows a major impact on the ingress of the hot gas into the rotor-stator wheel space.


Sign in / Sign up

Export Citation Format

Share Document