Structural stability theory of two-dimensional fluid flow under stochastic forcing

2011 ◽  
Vol 682 ◽  
pp. 332-361 ◽  
Author(s):  
NIKOLAOS A. BAKAS ◽  
PETROS J. IOANNOU

Large-scale mean flows often emerge in turbulent fluids. In this work, we formulate a stability theory, the stochastic structural stability theory (SSST), for the emergence of jets under external random excitation. We analytically investigate the structural stability of a two-dimensional homogeneous fluid enclosed in a channel and subjected to homogeneous random forcing. We show that two generic competing mechanisms control the instability that gives rise to the emergence of an infinitesimal jet: advection of the eddy vorticity by the mean flow that is shown to be jet forming and advection of the vorticity gradient of the jet by the eddies that is shown to hinder the formation of the mean flow. We show that stochastic forcing with small streamwise coherence and an amplitude larger than a certain threshold leads to the emergence of jets in the channel through a bifurcation of the non-linear SSST system.

1999 ◽  
Vol 390 ◽  
pp. 325-348 ◽  
Author(s):  
S. NAZARENKO ◽  
N. K.-R. KEVLAHAN ◽  
B. DUBRULLE

A WKB method is used to extend RDT (rapid distortion theory) to initially inhomogeneous turbulence and unsteady mean flows. The WKB equations describe turbulence wavepackets which are transported by the mean velocity and have wavenumbers which evolve due to the mean strain. The turbulence also modifies the mean flow and generates large-scale vorticity via the averaged Reynolds stress tensor. The theory is applied to Taylor's four-roller flow in order to explain the experimentally observed reduction in the mean strain. The strain reduction occurs due to the formation of a large-scale vortex quadrupole structure from the turbulent spot confined by the four rollers. Both turbulence inhomogeneity and three-dimensionality are shown to be important for this effect. If the initially isotropic turbulence is either homogeneous in space or two-dimensional, it has no effect on the large-scale strain. Furthermore, the turbulent kinetic energy is conserved in the two-dimensional case, which has important consequences for the theory of two-dimensional turbulence. The analytical and numerical results presented here are in good qualitative agreement with experiment.


2010 ◽  
Vol 643 ◽  
pp. 333-348 ◽  
Author(s):  
YONGYUN HWANG ◽  
CARLO COSSU

We compute the optimal response of the turbulent Couette mean flow to initial conditions, harmonic and stochastic forcing at Re = 750. The equations for the coherent perturbations are linearized near the turbulent mean flow and include the associated eddy viscosity. The mean flow is found to be linearly stable but it has the potential to amplify steamwise streaks from streamwise vortices. The most amplified structures are streamwise uniform and the largest amplifications of the energy of initial conditions and of the variance of stochastic forcing are realized by large-scale streaks having spanwise wavelengths of 4.4h and 5.2h respectively. These spanwise scales compare well with the ones of the coherent large-scale streaks observed in experimental realizations and direct numerical simulations of the turbulent Couette flow. The optimal response to the harmonic forcing, related to the sensitivity to boundary conditions and artificial forcing, can be very large and is obtained with steady forcing of structures with larger spanwise wavelength (7.7h). The optimal large-scale streaks are furthermore found proportional to the mean turbulent profile in the viscous sublayer and up to the buffer layer.


2016 ◽  
Vol 799 ◽  
pp. 541-578 ◽  
Author(s):  
Sam Durston ◽  
Andrew D. Gilbert

This paper concerns the generation of large-scale flows in forced two-dimensional systems. A Kolmogorov flow with a sinusoidal profile in one direction (driven by a body force) is known to become unstable to a large-scale flow in the perpendicular direction at a critical Reynolds number. This can occur in the presence of a ${\it\beta}$-effect and has important implications for flows observed in geophysical and astrophysical systems. It has recently been termed ‘zonostrophic instability’ and studied in a variety of settings, both numerically and analytically. The goal of the present paper is to determine the effect of magnetic field on such instabilities using the quasi-linear approximation, in which the full fluid system is decoupled into a mean flow and waves of one scale. The waves are driven externally by a given random body force and move on a fast time scale, while their stress on the mean flow causes this to evolve on a slow time scale. Spatial scale separation between waves and mean flow is also assumed, to allow analytical progress. The paper first discusses purely hydrodynamic transport of vorticity including zonostrophic instability, the effect of uniform background shear and calculation of equilibrium profiles in which the effective viscosity varies spatially, through the mean flow. After brief consideration of passive scalar transport or equivalently kinematic magnetic field evolution, the paper then proceeds to study the full magnetohydrodynamic system and to determine effective diffusivities and other transport coefficients using a mixture of analytical and numerical methods. This leads to results on the effect of magnetic field, background shear and ${\it\beta}$-effect on zonostrophic instability and magnetically driven instabilities.


2010 ◽  
Vol 664 ◽  
pp. 51-73 ◽  
Author(s):  
YONGYUN HWANG ◽  
CARLO COSSU

The linear response to stochastic and optimal harmonic forcing of small coherent perturbations to the turbulent channel mean flow is computed for Reynolds numbers ranging from Reτ = 500 to 20000. Even though the turbulent mean flow is linearly stable, it is nevertheless able to sustain large amplifications by the forcing. The most amplified structures consist of streamwise-elongated streaks that are optimally forced by streamwise-elongated vortices. For streamwise-elongated structures, the mean energy amplification of the stochastic forcing is found to be, to a first approximation, inversely proportional to the forced spanwise wavenumber while it is inversely proportional to its square for optimal harmonic forcing in an intermediate spanwise wavenumber range. This scaling can be explicitly derived from the linearized equations under the assumptions of geometric similarity of the coherent perturbations and of logarithmic base flow. Deviations from this approximate power-law regime are apparent in the pre-multiplied energy amplification curves that reveal a strong influence of two different peaks. The dominant peak scales in outer units with the most amplified spanwise wavelength of λz ≈ 3.5h, while the secondary peak scales in wall units with the most amplified λz+ ≈ 80. The associated optimal perturbations are almost independent of the Reynolds number when, respectively, scaled in outer and inner units. In the intermediate wavenumber range, the optimal perturbations are approximatively geometrically similar. Furthermore, the shape of the optimal perturbations issued from the initial value, the harmonic forcing and the stochastic forcing analyses are almost indistinguishable. The optimal streaks corresponding to the large-scale peak strongly penetrate into the inner layer, where their amplitude is proportional to the mean-flow profile. At the wavenumbers corresponding to the large-scale peak, the optimal amplifications of harmonic forcing are at least two orders of magnitude larger than the amplifications of the variance of stochastic forcing and both increase with the Reynolds number. This confirms the potential of the artificial forcing of optimal large-scale streaks for the flow control of wall-bounded turbulent flows.


1983 ◽  
Vol 105 (2) ◽  
pp. 185-196 ◽  
Author(s):  
T. T. Yeh ◽  
Baldwin Robertson ◽  
W. M. Mattar

The velocity field around vortex shedding strut mounted in a circular pipe has been in detail with a laser Doppler velocimeter (LDV) at a pipe Reynolds number equal to 90,000. The instantaneous velocity is decomposed into mean, periodic, and random components. Only the first two harmonics are large enough to be detected; the large-scale structure can be characterized by just these two these and the mean. Profiles of the different velocity terms are given upstream of, downstream of, and close to the strut. The two-dimensional velocity vector field of the mean flow on the transverse diametral plane of symmetry is presented along with its streamlines. Finally, for each spatial component, profiles of vortex visibility, the ratio of the energy of a periodic component to the total fluctuating energy in a narrow frequency band, are given.


2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


Author(s):  
Huixuan Wu ◽  
Rinaldo L. Miorini ◽  
Joseph Katz

A series of high resolution planar particle image velocimetry measurements performed in a waterjet pump rotor reveal the inner structure of the tip leakage vortex (TLV) which dominates the entire flow field in the tip region. Turbulence generated by interactions among the TLV, the shear layer that develops as the backward leakage flow emerges from the tip clearance as a “wall jet”, the passage flow, and the endwall is highly inhomogeneous and anisotropic. We examine this turbulence in both RANS and LES modelling contexts. Spatially non-uniform distributions of Reynolds stress components are explained in terms of the local mean strain field and associated turbulence production. Characteristic length scales are also inferred from spectral analysis. Spatial filtering of instantaneous data enables the calculation of subgrid scale (SGS) stresses, along with the SGS energy flux (dissipation). The data show that the SGS energy flux differs from the turbulence production rate both in trends and magnitude. The latter is dominated by energy flux from the mean flow to the large scale turbulence, which is resolved in LES, whereas the former is dominated by energy flux from the mean flow to the SGS turbulence. The SGS dissipation rate is also used for calculating the static and dynamic Smagorinsky coefficients, the latter involving filtering at multiple scales; both vary substantially in the tip region, and neither is equal to values obtained in isotropic turbulence.


1989 ◽  
Vol 209 ◽  
pp. 385-403 ◽  
Author(s):  
H. M. Atassi ◽  
J. Grzedzinski

For small-amplitude vortical and entropic unsteady disturbances of potential flows, Goldstein proposed a partial splitting of the velocity field into a vortical part u(I) that is a known function of the imposed upstream disturbance and a potential part ∇ϕ satisfying a linear inhomogeneous wave equation with a dipole-type source term. The present paper deals with flows around bodies with a stagnation point. It is shown that for such flows u(I) becomes singular along the entire body surface and its wake and as a result ∇ϕ will also be singular along the entire body surface. The paper proposes a modified splitting of the velocity field into a vortical part u(R) that has zero streamwise and normal components along the body surface, an entropy-dependent part and a regular part ∇ϕ* that satisfies a linear inhomogeneous wave equation with a modified source term.For periodic disturbances, explicit expressions for u(R) are given for three-dimensional flows past a single obstacle and for two-dimensional mean flows past a linear cascade. For weakly sheared flows, it is shown that if the mean flow has only a finite number of isolated stagnation points, u(R) will be finite along the body surface. On the other hand, if the mean flow has a stagnation line along the body surface such as in two-dimensional flows then the component of u(R) in this direction will have a logarithmic singularity.For incompressible flows, the boundary-value problem for ϕ* is formulated in terms of an integral equation of the Fredholm type. The theory is applied to a typical bluff body. Detailed calculations are carried out to show the velocity and pressure fields in response to incident harmonic disturbances.


2019 ◽  
Vol 865 ◽  
pp. 1085-1109 ◽  
Author(s):  
Yutaro Motoori ◽  
Susumu Goto

To understand the generation mechanism of a hierarchy of multiscale vortices in a high-Reynolds-number turbulent boundary layer, we conduct direct numerical simulations and educe the hierarchy of vortices by applying a coarse-graining method to the simulated turbulent velocity field. When the Reynolds number is high enough for the premultiplied energy spectrum of the streamwise velocity component to show the second peak and for the energy spectrum to obey the$-5/3$power law, small-scale vortices, that is, vortices sufficiently smaller than the height from the wall, in the log layer are generated predominantly by the stretching in strain-rate fields at larger scales rather than by the mean-flow stretching. In such a case, the twice-larger scale contributes most to the stretching of smaller-scale vortices. This generation mechanism of small-scale vortices is similar to the one observed in fully developed turbulence in a periodic cube and consistent with the picture of the energy cascade. On the other hand, large-scale vortices, that is, vortices as large as the height, are stretched and amplified directly by the mean flow. We show quantitative evidence of these scale-dependent generation mechanisms of vortices on the basis of numerical analyses of the scale-dependent enstrophy production rate. We also demonstrate concrete examples of the generation process of the hierarchy of multiscale vortices.


Sign in / Sign up

Export Citation Format

Share Document