Hybrid Eulerian–Lagrangian simulations for polymer–turbulence interactions

2013 ◽  
Vol 717 ◽  
pp. 535-575 ◽  
Author(s):  
Takeshi Watanabe ◽  
Toshiyuki Gotoh

AbstractThe effects of polymer additives on decaying isotropic turbulence are numerically investigated using a hybrid approach consisting of Brownian dynamics simulations for an enormous number of dumbbells (of the order of 10 billion,$O(1{0}^{10} )$) and direct numerical simulations of turbulence making full use of large-scale parallel computations. Reduction of the energy dissipation rate and modification of the kinetic energy spectrum in the dissipation range scale were observed when the reaction term due to the polymer additives was incorporated into the equation of motion for the solvent fluid. An increase in the polymer concentration or Weissenberg number${W}_{i} $yielded significant modifications of the turbulence statistics at small scales, such as a suppression of the local energy dissipation fluctuations. A power-law decay of the kinetic energy spectrum$E(k, t)\sim {k}^{- 4. 7} $was observed in the wavenumber range below the Kolmogorov length scale when${W}_{i} = 25$. The generation of intense vortices was suppressed by the polymer additives, consistent with previous studies using the constitutive equations. The field structures of the trace of the polymer stress depended on the intensity of its fluctuation: sheet-like structures were observed for the intermediate intensity region and filamentary structures were observed for the intense region. The results obtained with few polymers and large replicas could approximate those with many polymers and smaller replicas as far as the large-scale statistics were concerned.

Author(s):  
V. Solovej ◽  
K. Gorbunov ◽  
V. Vereshchak ◽  
O. Gorbunova

A study has been mode of transport-controlled mass transfer-controlled to particles suspended in a stirred vessel. The motion of particle in a fluid was examined and a method of predicting relative velocities in terms of Kolmogoroff’s theory of local isotropic turbulence for mass transfer was outlined. To provide a more concrete visualization of complex wave form of turbulence, the concepts of eddies, of eddy velocity, scale (or wave number) and energy spectrum, have proved convenient. Large scale motions of scale contain almost all of the energy and they are directly responsible for energy diffusion throughout the stirring vessel by kinetic and pressure energies. However, almost no energy is dissipated by the large-scale energy-containing eddies. A scale of motion less than is responsible for convective energy transfer to even smaller eddy sires. At still smaller eddy scales, close to a characteristic microscale, both viscous energy dissipation and convection are the rule. The last range of eddies has been termed the universal equilibrium range. It has been further divided into a low eddy size region, the viscous dissipation subrange, and a larger eddy size region, the inertial convection subrange. Measurements of energy spectrum in mixing vessel are shown that there is a range, where the so called -(5/3) power law is effective. Accordingly, the theory of local isotropy of Kolmogoroff can be applied because existence of the internal subrange. As the integrated value of local energy dissipation rate agrees with the power per unit mass of liquid from the impeller, almost all energy from the impeller is viscous dissipated in eddies of microscale. The correlation for mass transfer to particles suspended in a stirred vessel is recommended. The results of experimental study are approximately 12 % above the predicted values.


2009 ◽  
Vol 66 (10) ◽  
pp. 3115-3130 ◽  
Author(s):  
Rebecca E. Morss ◽  
Chris Snyder ◽  
Richard Rotunno

Abstract Results from homogeneous, isotropic turbulence suggest that predictability behavior is linked to the slope of a flow’s kinetic energy spectrum. Such a link has potential implications for the predictability behavior of atmospheric models. This article investigates these topics in an intermediate context: a multilevel quasigeostrophic model with a jet and temperature perturbations at the upper surface (a surrogate tropopause). Spectra and perturbation growth behavior are examined at three model resolutions. The results augment previous studies of spectra and predictability in quasigeostrophic models, and they provide insight that can help interpret results from more complex models. At the highest resolution tested, the slope of the kinetic energy spectrum is approximately at the upper surface but −3 or steeper at all but the uppermost interior model levels. Consistent with this, the model’s predictability behavior exhibits key features expected for flow with a shallower than −3 slope. At the highest resolution, upper-surface perturbation spectra peak below the energy-containing scales, and the error growth rate decreases as small scales saturate. In addition, as model resolution is increased and smaller scales are resolved, the peak of the upper-surface perturbation spectra shifts to smaller scales and the error growth rate increases. The implications for potential predictive improvements are not as severe, however, as in the standard picture of flows exhibiting a finite predictability limit. At the highest resolution, the model also exhibits periods of much faster-than-average perturbation growth that are associated with faster growth at smaller scales, suggesting predictability behavior that varies with time.


2019 ◽  
Vol 76 (2) ◽  
pp. 627-637 ◽  
Author(s):  
Tobias Selz ◽  
Lotte Bierdel ◽  
George C. Craig

Abstract Research on the mesoscale kinetic energy spectrum over the past few decades has focused on finding a dynamical mechanism that gives rise to a universal spectral slope. Here we investigate the variability of the spectrum using 3 years of kilometer-resolution analyses from COSMO configured for Germany (COSMO-DE). It is shown that the mesoscale kinetic energy spectrum is highly variable in time but that a minimum in variability is found on scales around 100 km. The high variability found on the small-scale end of the spectrum (around 10 km) is positively correlated with the precipitation rate where convection is a strong source of variance. On the other hand, variability on the large-scale end (around 1000 km) is correlated with the potential vorticity, as expected for geostrophically balanced flows. Accordingly, precipitation at small scales is more highly correlated with divergent kinetic energy, and potential vorticity at large scales is more highly correlated with rotational kinetic energy. The presented findings suggest that the spectral slope and amplitude on the mesoscale range are governed by an ever-changing combination of the upscale and downscale impacts of these large- and small-scale dynamical processes rather than by a universal, intrinsically mesoscale dynamical mechanism.


2006 ◽  
Vol 13 (1) ◽  
pp. 83-98 ◽  
Author(s):  
B. Galperin ◽  
S. Sukoriansky ◽  
N. Dikovskaya ◽  
P. L. Read ◽  
Y. H. Yamazaki ◽  
...  

Abstract. Numerical studies of small-scale forced, two-dimensional turbulent flows on the surface of a rotating sphere have revealed strong large-scale anisotropization that culminates in the emergence of quasi-steady sets of alternating zonal jets, or zonation. The kinetic energy spectrum of such flows also becomes strongly anisotropic. For the zonal modes, a steep spectral distribution, E(n)=CZ (Ω/R)2 n-5, is established, where CZ=O(1) is a non-dimensional coefficient, Ω is the angular velocity, and R is the radius of the sphere, respectively. For other, non-zonal modes, the classical, Kolmogorov-Batchelor-Kraichnan, spectral law is preserved. This flow regime, referred to as a zonostrophic regime, appears to have wide applicability to large-scale planetary and terrestrial circulations as long as those are characterized by strong rotation, vertically stable stratification and small Burger numbers. The well-known manifestations of this regime are the banded disks of the outer planets of our Solar System. Relatively less known examples are systems of narrow, subsurface, alternating zonal jets throughout all major oceans discovered in state-of-the-art, eddy-permitting simulations of the general oceanic circulation. Furthermore, laboratory experiments recently conducted using the Coriolis turntable have basically confirmed that the lateral gradient of ''planetary vorticity'' (emulated via the topographic β-effect) is the primary cause of the zonation and that the latter is entwined with the development of the strongly anisotropic kinetic energy spectrum that tends to attain the same zonal and non-zonal distributions, −5 and , respectively, in both the slope and the magnitude, as the corresponding spectra in other environmental conditions. The non-dimensional coefficient CZ in the −5 spectral law appears to be invariant, , in a variety of simulated and natural flows. This paper provides a brief review of the zonostrophic regime. The review includes the discussion of the physical nature, basic mechanisms, scaling laws and universality of this regime. A parameter range conducive to its establishment is identified, and collation of laboratory and naturally occurring flows is presented through which the zonostrophic regime manifests itself in the real world.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 157
Author(s):  
Duane Rosenberg ◽  
Annick Pouquet ◽  
Raffaele Marino

We study in this paper the correlation between the buoyancy flux, the efficiency of energy dissipation and the linear and nonlinear components of potential vorticity, PV, a point-wise invariant of the Boussinesq equations, contrasting the three identified regimes of rotating stratified turbulence, namely wave-dominated, wave–eddy interactions and eddy-dominated. After recalling some of the main novel features of these flows compared to homogeneous isotropic turbulence, we specifically analyze three direct numerical simulations in the absence of forcing and performed on grids of 10243 points, one in each of these physical regimes. We focus in particular on the link between the point-wise buoyancy flux and the amount of kinetic energy dissipation and of linear and nonlinear PV. For flows dominated by waves, we find that the highest joint probability is for minimal kinetic energy dissipation (compared to the buoyancy flux), low dissipation efficiency and low nonlinear PV, whereas for flows dominated by nonlinear eddies, the highest correlation between dissipation and buoyancy flux occurs for weak flux and high localized nonlinear PV. We also show that the nonlinear potential vorticity is strongly correlated with high dissipation efficiency in the turbulent regime, corresponding to intermittent events, as observed in the atmosphere and oceans.


Sign in / Sign up

Export Citation Format

Share Document