Extended series solutions and bifurcations of the Dean equations

2013 ◽  
Vol 739 ◽  
pp. 179-195 ◽  
Author(s):  
F. A. T. Boshier ◽  
A. J. Mestel

AbstractSteady, incompressible flow down a slowly curving circular pipe is considered. Both real and complex solutions of the Dean equations are found by analytic continuation of a series expansion in the Dean number, $K$. Higher-order Hermite–Padé approximants are used and the results compared with direct computations using a spectral method. The two techniques agree for large, real $K$, indicating that previously reported asymptotic behaviour of the series solution is incorrect, and thus resolving a long-standing paradox. It is further found that a second solution branch, known to exist at high Dean number, does not appear to merge with the main branch at any finite $K$, but appears rather to bifurcate from infinity. The convergence of the series is limited by a square-root singularity on the imaginary $K$-axis. Four complex solutions merge at this point. One corresponds to an extension of the real solution, while the other three are previously unreported. This bifurcation is found to coincide with the breaking of a symmetry property of the flow. On one of the new branches the velocity is unbounded as $K\rightarrow 0$. It follows that the zero-Dean-number flow is formally non-unique, in that there is a second complex solution as $K\rightarrow 0$ for any non-zero $\vert K\vert $. This behaviour is manifested in other flows at zero Reynolds number. The other two complex solutions bear some resemblance to the two solution branches for large real $K$.

Author(s):  
Harry Hui Cheng

Abstract The involute function ε = tanϕ – ϕ or ε = invϕ, and the inverse involute function ϕ = inv−1(ε) arise in the tooth geometry calculations of involute gears, involute splines, and involute serrations. In this paper, the explicit series solutions of the inverse involute function are derived by perturbation techniques in the ranges of |ε| < 1.8, 1.8 < |ε| < 5, and |ε| > 5. These explicit solutions are compared with the exact solutions, and the expressions for estimated errors are also developed. Of particular interest in the applications are the simple expansion ϕ = inv−1(ε) = (3ε)1/3 – 2ε/5 which gives the angle ϕ (< 45°) with error less than 1.0% in the range of ε < 0.215, and the economized asymptotic series expansion ϕ = inv−1 (ε) = 1.440859ε1/3 – 0.3660584ε which gives ϕ with error less than 0.17% in the range of ε < 0.215. The four, seven, and nine term series solutions of ϕ = inv−1 (ε) are shown to have error less than 0.0018%, 4.89 * 10−6%, and 2.01 * 10−7% in the range of ε < 0.215, respectively. The computation of the series solution of the inverse involute function can be easily performed by using a pocket calculator, which should lead to its practical applications in the design and analysis of involute gears, splines, and serrations.


1957 ◽  
Vol 24 (3) ◽  
pp. 376-380
Author(s):  
E. L. McDowell ◽  
E. Sternberg

Abstract This paper contains an explicit series solution, exact within the classical theory of elasticity, for the steady-state thermal stresses and displacements induced in a spherical shell by an arbitrary axisymmetric distribution of surface temperatures. The corresponding solutions for a solid sphere and for a spherical cavity in an infinite medium are obtained as limiting cases. The convergence of the series solutions obtained is discussed. Numerical results are presented appropriate to a solid sphere if two hemispherical caps of its boundary are maintained at distinct uniform temperatures.


In this chapter, the analytic solution of nonlinear partial differential equations arising in heat transfer is obtained using the newly developed analytic method, namely the Homotopy Analysis Method (HAM). The homotopy analysis method provides us with a new way to obtain series solutions of such problems. This method contains the auxiliary parameter provides us with a simple way to adjust and control the convergence region of series solution. By suitable choice of the auxiliary parameter, we can obtain reasonable solutions for large modulus.


1978 ◽  
Vol 86 (1) ◽  
pp. 129-145 ◽  
Author(s):  
Milton Van Dyke

Dean's series for steady fully developed laminar flow through a toroidal pipe of small curvature ratio has been extended by computer to 24 terms. Analysis suggests that convergence is limited by a square-root singularity on the negative axis of the square of the Dean number. An Euler transformation and extraction of the leading and secondary singularities at infinity render the series accurate for all Dean numbers. For curvature ratios no greater than$\frac{1}{250} $, experimental measurements of the laminar friction factor agree with the theory over a wide range of Dean numbers. In particular, they confirm our conclusion that the friction in a loosely coiled pipe grows asymptotically as the one-quarter power of the Dean number based on mean flow speed. This contradicts a number of incomplete boundary-layer analyses in the literature, which predict a square-root variation.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Scott A. Hadley ◽  
Lawrence K. Forbes

A theoretical model developed by Stone describing a three-level trophic system in the Ocean is analysed. The system consists of two distinct predator-prey networks, linked by competition for nutrients at the lowest level. There is also an interaction at the level of the two preys, in the sense that the presence of one is advantageous to the other when nutrients are low. It is shown that spontaneous oscillations in population numbers are possible, and that they result from a Hopf bifurcation. The limit cycles are analysed using Floquet theory and are found to change from stable to unstable as a solution branch is traversed.


1922 ◽  
Vol 41 ◽  
pp. 128-140
Author(s):  
Bevan B. Baker

In the two parts of this investigation previously published it has been shown that the solution in terms of elliptic functions represents the motion of the particular dynamical system under consideration throughout the whole range of values of s and g for which a real solution exists, except for those values for which s = 2g and k = 1, but that, on the other hand, the series solution is convergent and represents the motion only so long asfor values of s and g for which the sign of this inequality is reversed the trigonometric series representing the solution are divergent. It is of importance to investigate what discontinuities, if any, of the system correspond to values of s and g which lie on the boundary of the region of convergence; the present part is concerned primarily with showing that under such circumstances no discontinuity of the system exists, thus confirming the suggestions made in Part I., § 12.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 785
Author(s):  
Daniele Tommasini

A class of bivariate infinite series solutions of the elliptic and hyperbolic Kepler equations is described, adding to the handful of 1-D series that have been found throughout the centuries. This result is based on an iterative procedure for the analytical computation of all the higher-order partial derivatives of the eccentric anomaly with respect to the eccentricity e and mean anomaly M in a given base point (ec,Mc) of the (e,M) plane. Explicit examples of such bivariate infinite series are provided, corresponding to different choices of (ec,Mc), and their convergence is studied numerically. In particular, the polynomials that are obtained by truncating the infinite series up to the fifth degree reach high levels of accuracy in significantly large regions of the parameter space (e,M). Besides their theoretical interest, these series can be used for designing 2-D spline numerical algorithms for efficiently solving Kepler’s equations for all values of the eccentricity and mean anomaly.


1970 ◽  
Vol 41 (4) ◽  
pp. 823-835 ◽  
Author(s):  
J. C. Cooke ◽  
A. J. Robins

A simplified example of this type of flow was examined in detail by developing two series, eventually matched, one about the nodal point and the other about the saddle point, and also by finite differences, marching from the nodal point to the saddle point. It was found that the results of marching the two series were in agreement with the finite difference method. The series solution near the saddle point is not unique, but numerical evidence indicates that the correct solution is that which has ‘exponential decay’ at infinity, and that this type of solution, if such exists, automatically emerges when the finite difference method is used.


Author(s):  
Francisco-Jesús Castro-Jiménez ◽  
María-Cruz Fernández-Fernández ◽  
Michel Granger

Abstract We study integral representations of the Gevrey series solutions of irregular hypergeometric systems under certain assumptions. We prove that, for such systems, any Gevrey series solution, along a coordinate hyperplane of its singular support, is the asymptotic expansion of a holomorphic solution given by a carefully chosen integral representation.


1972 ◽  
Vol 94 (2) ◽  
pp. 203-209 ◽  
Author(s):  
D. M. France ◽  
T. Ginsberg

An analytical method is presented which extends the series solution of the Laplace and Poisson equations with irregular boundary conditions to multi-cell problems. The method employs a least-squares technique of satisfying the boundary conditions on the irregular boundaries and eliminates the use of a finite number of boundary points to satisfy these conditions. The technique is applied to the calculation of the fully developed temperature distribution of a constant-velocity fluid flowing parallel to a semi-infinite square array of circular nuclear fuel rods. The bounding wall of the array is located such that the flow area of the cell associated with the rod adjacent to the wall is different from the (equal) areas of all the other cells. The series solution is compared to a finite-difference solution for a sample case of two cells. The results for the semi-infinite array indicate that while the array temperature distribution is markedly affected by the difference in flow areas, the Nusselt numbers of the rods are relatively unaffected. Typical results are presented for a pitch-to-diameter of 1.2; the flow area of the first cell is 3.67 percent greater than the area of the other cells.


Sign in / Sign up

Export Citation Format

Share Document