scholarly journals Lagrangian cascade in three-dimensional homogeneous and isotropic turbulence

2014 ◽  
Vol 741 ◽  
Author(s):  
Yongxiang Huang ◽  
François G. Schmitt

AbstractIn this work, the scaling statistics of the dissipation along Lagrangian trajectories are investigated by using fluid tracer particles obtained from a high-resolution direct numerical simulation with $\mathit{Re}_{\lambda }=400$. Both the energy dissipation rate $\epsilon $ and the local time-averaged $\epsilon _{\tau }$ agree rather well with the lognormal distribution hypothesis. Several statistics are then examined. It is found that the autocorrelation function $\rho (\tau )$ of $\ln (\epsilon (t))$ and variance $\sigma ^2(\tau )$ of $\ln (\epsilon _{\tau }(t))$ obey a log-law with scaling exponent $\beta '=\beta =0.30$ compatible with the intermittency parameter $\mu =0.30$. The $q{\rm th}$-order moment of $\epsilon _{\tau }$ has a clear power law on the inertial range $10<\tau /\tau _{\eta }<100$. The measured scaling exponent $K_L(q)$ agrees remarkably with $q-\zeta _L(2q)$ where $\zeta _L(2q)$ is the scaling exponent estimated using the Hilbert methodology. All of these results suggest that the dissipation along Lagrangian trajectories could be modelled by a multiplicative cascade.

1998 ◽  
Vol 366 ◽  
pp. 1-31 ◽  
Author(s):  
VADIM BORUE ◽  
STEVEN A. ORSZAG

Statistical properties of the subgrid-scale stress tensor, the local energy flux and filtered velocity gradients are analysed in numerical simulations of forced three-dimensional homogeneous turbulence. High Reynolds numbers are achieved by using hyperviscous dissipation. It is found that in the inertial range the subgrid-scale stress tensor and the local energy flux allow simple parametrization based on a tensor eddy viscosity. This parametrization underlines the role that negative skewness of filtered velocity gradients plays in the local energy transfer. It is found that the local energy flux only weakly correlates with the locally averaged energy dissipation rate. This fact reflects basic difficulties of large-eddy simulations of turbulence, namely the possibility of predicting the locally averaged energy dissipation rate through inertial-range quantities such as the local energy flux is limited. Statistical properties of subgrid-scale velocity gradients are systematically studied in an attempt to reveal the mechanism of local energy transfer.


2015 ◽  
Vol 112 (41) ◽  
pp. 12633-12638 ◽  
Author(s):  
P. K. Yeung ◽  
X. M. Zhai ◽  
Katepalli R. Sreenivasan

We have performed direct numerical simulations of homogeneous and isotropic turbulence in a periodic box with 8,1923grid points. These are the largest simulations performed, to date, aimed at improving our understanding of turbulence small-scale structure. We present some basic statistical results and focus on “extreme” events (whose magnitudes are several tens of thousands the mean value). The structure of these extreme events is quite different from that of moderately large events (of the order of 10 times the mean value). In particular, intense vorticity occurs primarily in the form of tubes for moderately large events whereas it is much more “chunky” for extreme events (though probably overlaid on the traditional vortex tubes). We track the temporal evolution of extreme events and find that they are generally short-lived. Extreme magnitudes of energy dissipation rate and enstrophy occur simultaneously in space and remain nearly colocated during their evolution.


2012 ◽  
Vol 701 ◽  
pp. 419-429 ◽  
Author(s):  
P. E. Hamlington ◽  
D. Krasnov ◽  
T. Boeck ◽  
J. Schumacher

AbstractLocal dissipation-scale distributions and high-order statistics of the energy dissipation rate are examined in turbulent channel flow using very high-resolution direct numerical simulations at Reynolds numbers ${\mathit{Re}}_{\tau } = 180$, $381$ and $590$. For sufficiently large ${\mathit{Re}}_{\tau } $, the dissipation-scale distributions and energy dissipation moments in the channel bulk flow agree with those in homogeneous isotropic turbulence, including only a weak Reynolds-number dependence of both the finest and largest scales. Systematic, but ${\mathit{Re}}_{\tau } $-independent, variations in the distributions and moments arise as the wall is approached for ${y}^{+ } \lesssim 100$. In the range $100\lt {y}^{+ } \lt 200$, there are substantial differences in the moments between the lowest and the two larger values of ${\mathit{Re}}_{\tau } $. This is most likely caused by coherent vortices from the near-wall region, which fill the whole channel for low ${\mathit{Re}}_{\tau } $.


2011 ◽  
Vol 684 ◽  
pp. 427-440 ◽  
Author(s):  
Chuong V. Tran ◽  
Luke A. K. Blackbourn ◽  
Richard K. Scott

AbstractWe study both theoretically and numerically surface quasi-geostrophic turbulence regularized by the usual molecular viscosity, with an emphasis on a number of classical predictions. It is found that the system’s number of degrees of freedom $N$, which is defined in terms of local Lyapunov exponents, scales as ${\mathit{Re}}^{3/ 2} $, where $\mathit{Re}$ is the Reynolds number expressible in terms of the viscosity, energy dissipation rate and system’s integral scale. For general power-law energy spectra ${k}^{\ensuremath{-} \ensuremath{\alpha} } $, a comparison of $N$ with the number of dynamically active Fourier modes, i.e. the modes within the energy inertial range, yields $\ensuremath{\alpha} = 5/ 3$. This comparison further renders the scaling ${\mathit{Re}}^{1/ 2} $ for the exponential dissipation rate at the dissipation wavenumber. These results have been predicted on the basis of Kolmogorov’s theory. Our approach thus recovers these classical predictions and is an analytic alternative to the traditional phenomenological method. The implications of the present findings are discussed in conjunction with related results in the literature. Support for the analytic results is provided through a series of direct numerical simulations.


2021 ◽  
Vol 33 (4) ◽  
pp. 045114
Author(s):  
A. Gorbunova ◽  
G. Balarac ◽  
L. Canet ◽  
G. Eyink ◽  
V. Rossetto

10.14311/994 ◽  
2007 ◽  
Vol 47 (6) ◽  
Author(s):  
S. Xanthos ◽  
M. Gong ◽  
Y. Andreopoulos

A custom-made hot-wire vorticity probe was designed and developed capable of measuring the time-dependent highly fluctuating three dimensional velocity and vorticity vectors, and associated total temperature, in non-isothermal and inhomogeneous flows with reasonable spatial and temporal resolution. These measurements allowed computation of the vorticity stretching/tilting terms, vorticity generation through dilatation terms, full dissipation rate of the kinetic energy term and full rate-of-strain tensor. The probe has been validated experimentally in low-speed boundary layers and used in the CCNY Shock Tube Research Facility, where interactions of planar expansion waves or shock waves with homogeneous and isotropic turbulence have been investigated at several Reynolds numbers. 


Sign in / Sign up

Export Citation Format

Share Document