scholarly journals On the existence of steady-state resonant waves in experiments

2014 ◽  
Vol 763 ◽  
pp. 1-23 ◽  
Author(s):  
Z. Liu ◽  
D. L. Xu ◽  
J. Li ◽  
T. Peng ◽  
A. Alsaedi ◽  
...  

AbstractThis paper describes an experimental investigation of steady-state resonant waves. Several co-propagating short-crested wave trains are generated in a basin at the State Key Laboratory of Ocean Engineering (SKLOE) in Shanghai, and the wavefields are measured and analysed both along and normal to the direction of propagation. These steady-state resonant waves are first calculated theoretically under the exact resonance criterion with sufficiently high nonlinearity, and then are generated in the basin by means of the main wave components that contain at least 95 % of the wave energy. The steady-state wave spectra are quantitatively observed within the inherent system error of the basin and identified by means of a contrasting experiment. Both symmetrical and anti-symmetrical steady-state resonant waves are observed and the experimental and theoretical results show excellent agreement. These results offer the first experimental evidence of the existence of steady-state resonant waves with multiple solutions.

Author(s):  
Huixiang Chen ◽  
Daqing Zhou ◽  
Kan Kan ◽  
Hui Xu ◽  
Yuan Zheng ◽  
...  

1961 ◽  
Vol 83 (2) ◽  
pp. 195-200 ◽  
Author(s):  
S. Cooper

The object of the paper is to indicate the value of theoretical investigations of hydrodynamic finite bearings under steady-state conditions. Methods of solution of Reynolds equation by both desk and digital computing, and methods of stabilizing the processes of solution, are described. The nondimensional data available from the solutions are stated. The outcome of an attempted solution of the energy equation is discussed. A comparison between some theoretical and experimental results is shown. Experimental methods employed and some difficulties encountered are discussed. Some theoretical results are given to indicate the effects of the inclusion of slip velocity, stabilizing slots, and a simple case of whirl.


1976 ◽  
Vol 73 ◽  
pp. 173-192
Author(s):  
G. T. Bath

Recent work on the physical processes resulting from mass transfer between the red and blue components of dwarf nova binaries is reviewed. The optical behaviour of the blue component's accretion disc suggests that it may be the infall, accretion energy which is being liberated during outbursts. Theoretical results which suggest that the red component may suffer quasi-periodic mass transfer instabilities are discussed. The resulting accretion disc properties are considered and compared with the observed optical outburst behaviour for the simplest steady state disc models. The complexity of the interaction between the two stellar components in these systems is emphasized.


1969 ◽  
Vol 91 (4) ◽  
pp. 1011-1016 ◽  
Author(s):  
B. L. Johnson ◽  
E. E. Stewart

This study reports the results of an analytical and experimental investigation of helical springs subjected to vibratory motion. Transfer functions are presented for both displacement and transmitted force as outputs with force as the input. Steady-state sinusoidal Magnitude Ratio (displacement—force) and Transmittance Ratio (force—force) are plotted along with substantiating experimental data. It is shown that an actual spring displays frequency response characteristics over most of the frequency spectrum that would render its function useless in many cases.


2012 ◽  
Vol 711 ◽  
pp. 101-121 ◽  
Author(s):  
Y. Ma ◽  
G. Dong ◽  
M. Perlin ◽  
X. Ma ◽  
G. Wang

AbstractAn experimental investigation focusing on the effect of dissipation on the evolution of the Benjamin–Feir instability is reported. A series of wave trains with added sidebands, and varying initial steepness, perturbed amplitudes and frequencies, are physically generated in a long wave flume. The experimental results directly confirm the stabilization theory of Segur et al. (J. Fluid Mech., vol. 539, 2005, pp. 229–271), i.e. dissipation can stabilize the Benjamin–Feir instability. Furthermore, the experiments reveal that the effect of dissipation on modulational instability depends strongly on the perturbation frequency. It is found that the effect of dissipation on the growth rates of the sidebands for the waves with higher perturbation frequencies is more evident than on those of waves with lower perturbation frequencies. In addition, numerical simulations based on Dysthe’s equation with a linear damping term included, which is estimated from the experimental data, can predict the experimental results well if the momentum integral of the wave trains is conserved during evolution.


Sign in / Sign up

Export Citation Format

Share Document