scholarly journals The kinematics of the reduced velocity gradient tensor in a fully developed turbulent free shear flow

2015 ◽  
Vol 767 ◽  
pp. 627-658 ◽  
Author(s):  
P. K. Rabey ◽  
A. Wynn ◽  
O. R. H. Buxton

AbstractThis paper examines the kinematic behaviour of the reduced velocity gradient tensor (VGT),$\tilde{\unicode[STIX]{x1D608}}_{ij}$, which is defined as a$2\times 2$block, from a single interrogation plane, of the full VGT$\unicode[STIX]{x1D608}_{ij}=\partial u_{i}/\partial x_{j}$. Direct numerical simulation data from the fully developed turbulent region of a nominally two-dimensional mixing layer are used in order to examine the extent to which information on the full VGT can be derived from the reduced VGT. It is shown that the reduced VGT is able to reveal significantly more information about regions of the flow in which strain rate is dominant over rotation. It is thus possible to use the assumptions of homogeneity and isotropy to place bounds on the first two statistical moments (and their covariance) of the eigenvalues of the reduced strain-rate tensor (the symmetric part of the reduced VGT) which in turn relate to the turbulent strain rates. These bounds are shown to be dependent upon the kurtosis of$\partial u_{1}/\partial x_{1}$and another variable defined from the constituents of the reduced VGT. The kurtosis is observed to be minimised on the centreline of the mixing layer and thus tighter bounds are possible at the centre of the mixing layer than at the periphery. Nevertheless, these bounds are observed to hold for the entirety of the mixing layer, despite departures from local isotropy. The interrogation plane from which the reduced VGT is formed is observed not to affect the joint probability density functions (p.d.f.s) between the strain-rate eigenvalues and the reduced strain-rate eigenvalues despite the fact that this shear flow has a significant mean shear in the cross-stream direction. Further, it is found that the projection of the eigenframe of the strain-rate tensor onto the interrogation plane of the reduced VGT is also independent of the plane that is chosen, validating the approach of bounding the full VGT using the assumption of local isotropy.

2013 ◽  
Vol 716 ◽  
pp. 597-615 ◽  
Author(s):  
J. I. Cardesa ◽  
D. Mistry ◽  
L. Gan ◽  
J. R. Dawson

AbstractIn this paper we examine the invariants $p$ and $q$ of the reduced $2\times 2$ velocity gradient tensor (VGT) formed from a two-dimensional (2D) slice of an incompressible three-dimensional (3D) flow. Using data from both 2D particle image velocimetry (PIV) measurements and 3D direct numerical simulations of various turbulent flows, we show that the joint probability density functions (p.d.f.s) of $p$ and $q$ exhibit a common characteristic asymmetric shape consistent with $\langle pq\rangle \lt 0$. An explanation for this inequality is proposed. Assuming local homogeneity we derive $\langle p\rangle = 0$ and $\langle q\rangle = 0$. With the addition of local isotropy the sign of $\langle pq\rangle $ is proved to be the same as that of the skewness of $\partial {u}_{1} / \partial {x}_{1} $, hence negative. This suggests that the observed asymmetry in the joint p.d.f.s of $p{{\ndash}}q$ stems from the universal predominance of vortex stretching at the smallest scales. Some advantages of this joint p.d.f. compared with that of $Q{{\ndash}}R$ obtained from the full $3\times 3$ VGT are discussed. Analysing the eigenvalues of the reduced strain-rate matrix associated with the reduced VGT, we prove that in some cases the 2D data can unambiguously discriminate between the bi-axial (sheet-forming) and axial (tube-forming) strain-rate configurations of the full $3\times 3$ strain-rate tensor.


2015 ◽  
Vol 766 ◽  
pp. 202-225 ◽  
Author(s):  
Rui Ni ◽  
Stefan Kramel ◽  
Nicholas T. Ouellette ◽  
Greg A. Voth

AbstractWe present simultaneous experimental measurements of the dynamics of anisotropic particles transported by a turbulent flow and the velocity gradient tensor of the flow surrounding them. We track both rod-shaped particles and small spherical flow tracers using stereoscopic particle tracking. By using scanned illumination, we are able to obtain a high enough seeding density of tracers to measure the full velocity gradient tensor near the rod. The alignment of rods with the vorticity and the eigenvectors of the strain rate from experimental results agree well with numerical findings. A full description of the tumbling of rods in turbulence requires specifying a seven-dimensional joint probability density function (jPDF) of five scalars characterizing the velocity gradient tensor and two scalars describing the relative orientation of the rod. If these seven parameters are known, then Jeffery’s equation specifies the rod tumbling rate and any statistic of rod rotations can be obtained as a weighted average over the jPDF. To look for a lower-dimensional projection to simplify the problem, we explore conditional averages of the mean-squared tumbling rate. The conditional dependence of the mean-squared tumbling rate on the magnitude of both the vorticity and the strain rate is strong, as expected, and similar. There is also a strong dependence on the orientation between the rod and the vorticity, since a rod aligned with the vorticity vector tumbles due to strain but not vorticity. When conditioned on the alignment of the rod with the eigenvectors of the strain rate, the largest tumbling rate is obtained when the rod is oriented at a certain angle to the eigenvector that corresponds to the smallest eigenvalue, because this particular orientation maximizes the contribution from both the vorticity and strain.


2013 ◽  
Vol 737 ◽  
pp. 571-596 ◽  
Author(s):  
Laurent Chevillard ◽  
Charles Meneveau

AbstractThe orientation dynamics of small anisotropic tracer particles in turbulent flows is studied using direct numerical simulation (DNS) and results are compared with Lagrangian stochastic models. Generalizing earlier analysis for axisymmetric ellipsoidal particles (Parsa et al., Phys. Rev. Lett., vol. 109, 2012, 134501), we measure the orientation statistics and rotation rates of general, triaxial–ellipsoidal tracer particles using Lagrangian tracking in DNS of isotropic turbulence. Triaxial ellipsoids that are very long in one direction, very thin in another and of intermediate size in the third direction exhibit reduced rotation rates that are similar to those of rods in the ellipsoid’s longest direction, while exhibiting increased rotation rates that are similar to those of axisymmetric discs in the thinnest direction. DNS results differ significantly from the case when the particle orientations are assumed to be statistically independent from the velocity gradient tensor. They are also different from predictions of a Gaussian process for the velocity gradient tensor, which does not provide realistic preferred vorticity–strain-rate tensor alignments. DNS results are also compared with a stochastic model for the velocity gradient tensor based on the recent fluid deformation approximation (RFDA). Unlike the Gaussian model, the stochastic model accurately predicts the reduction in rotation rate in the longest direction of triaxial ellipsoids since this direction aligns with the flow’s vorticity, with its rotation perpendicular to the vorticity being reduced. For disc-like particles, or in directions perpendicular to the longest direction in triaxial particles, the model predicts noticeably smaller rotation rates than those observed in DNS, a behaviour that can be understood based on the probability of vorticity orientation with the most contracting strain-rate eigendirection in the model.


Author(s):  
Daniel Wacks ◽  
Ilias Konstantinou ◽  
Nilanjan Chakraborty

The behaviours of the three invariants of the velocity gradient tensor and the resultant local flow topologies in turbulent premixed flames have been analysed using three-dimensional direct numerical simulation data for different values of the characteristic Lewis number ranging from 0.34 to 1.2. The results have been analysed to reveal the statistical behaviours of the invariants and the flow topologies conditional upon the reaction progress variable. The behaviours of the invariants have been explained in terms of the relative strengths of the thermal and mass diffusions, embodied by the influence of the Lewis number on turbulent premixed combustion. Similarly, the behaviours of the flow topologies have been explained in terms not only of the Lewis number but also of the likelihood of the occurrence of individual flow topologies in the different flame regions. Furthermore, the sensitivity of the joint probability density function of the second and third invariants and the joint probability density functions of the mean and Gaussian curvatures to the variation in Lewis number have similarly been examined. Finally, the dependences of the scalar--turbulence interaction term on augmented heat release and of the vortex-stretching term on flame-induced turbulence have been explained in terms of the Lewis number, flow topology and reaction progress variable.


2017 ◽  
Vol 817 ◽  
pp. 1-20 ◽  
Author(s):  
O. R. H. Buxton ◽  
M. Breda ◽  
X. Chen

Tomographic particle image velocimetry experiments were performed in the near field of the turbulent flow past a square cylinder. A classical Reynolds decomposition was performed on the resulting velocity fields into a time invariant mean flow and a fluctuating velocity field. This fluctuating velocity field was then further decomposed into coherent and residual/stochastic fluctuations. The statistical distributions of the second and third invariants of the velocity-gradient tensor were then computed at various streamwise locations, along the centreline of the flow and within the shear layers. These invariants were calculated from both the Reynolds-decomposed fluctuating velocity fields and the coherent and stochastic fluctuating velocity fields. The range of spatial locations probed incorporates regions of contrasting flow physics, including a mean recirculation region and separated shear layers, both upstream and downstream of the location of peak turbulence intensity along the centreline. These different flow physics are also reflected in the velocity gradients themselves with different topologies, as characterised by the statistical distributions of the constituent enstrophy and strain-rate invariants, for the three different fluctuating velocity fields. Despite these differing flow physics the ubiquitous self-similar ‘tear drop’-shaped joint probability density function between the second and third invariants of the velocity-gradient tensor is observed along the centreline and shear layer when calculated from both the Reynolds decomposed and the stochastic velocity fluctuations. These ‘tear drop’-shaped joint probability density functions are not, however, observed when calculated from the coherent velocity fluctuations. This ‘tear drop’ shape is classically associated with the statistical distribution of the velocity-gradient tensor invariants in fully developed turbulent flows in which there is no coherent dynamics present, and hence spectral peaks at low wavenumbers. The results presented in this manuscript, however, show that such ‘tear drops’ also exist in spatially developing inhomogeneous turbulent flows. This suggests that the ‘tear drop’ shape may not just be a universal feature of fully developed turbulence but of turbulent flows in general.


2000 ◽  
Vol 404 ◽  
pp. 87-115 ◽  
Author(s):  
JUAN M. CHACIN ◽  
BRIAN J. CANTWELL

The generation of Reynolds stress, turbulent kinetic energy and dissipation in the turbulent boundary layer simulation of Spalart (1988) is studied using the invariants of the velocity gradient tensor. This technique enables the study of the whole range of scales in the flow using a single unified approach. In addition, it also provides a rational basis for relating the flow structure in physical space to an appropriate statistical measure in the space of invariants. The general characteristics of the turbulent motion are analysed using a combination of computer-based visualization of flow variables together with joint probability distributions of the invariants. The quantities studied are of direct interest in the development of turbulence models. The cubic discriminant of the velocity gradient tensor provides a useful marker for distinguishing regions of active and passive turbulence. It is found that the strongest Reynolds-stress and turbulent-kinetic-energy generating events occur where the discriminant has a rapid change of sign. Finally, the time evolution of the invariants is studied by computing along particle paths in a Lagrangian frame of reference. It is found that the invariants tend to evolve toward two distinct asymptotes in the plane of invariants. Several simplified models for the evolution of the velocity gradient tensor are described. These models compare well with several of the important features observed in the Lagrangian computation. The picture of the turbulent boundary layer which emerges is consistent with the ideas of Townsend (1956) and with the physical picture of turbulent structure set forth by Theodorsen (1955).


2014 ◽  
Vol 756 ◽  
pp. 252-292 ◽  
Author(s):  
R. Gomes-Fernandes ◽  
B. Ganapathisubramani ◽  
J. C. Vassilicos

AbstractAn experimental study of turbulence generated by a low-blockage space-filling fractal square grid was performed using cinematographic stereoscopic particle image velocimetry in a water tunnel. All fluctuating velocity gradients were measured and their statistics were computed at three different stations along the streamwise direction downstream of the grid: in the production region, at the location of peak turbulence intensity and in the non-equilibrium decay region. The usual signatures of these statistics are only found in the decay region, where a well-defined$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}2/3$power-law dependence of the second-order structure function on two-point distance is also present. However, this$2/3$exponent is well defined over a wide range of scales even at the peak location, where the statistics of the fluctuating velocity-gradient tensor are very unusual. There, as at the production region station, the$Q\text {--}R$teardrop shape is not yet fully developed, vortex stretching only slightly dominates over compression and they both fluctuate very widely, reaching very high low-probability values. In these two stations, there is also only marginal preference between sheet-like and tube-like velocity-gradient structures as seen by the sign of the second eigenvalue of the strain-rate tensor. Yet, there are subregions of the flow in the production region where the$2/3$exponent is present and where the$Q\text {--}R$teardrop shape is as undeveloped as for the entire data set at this station.


2017 ◽  
Vol 815 ◽  
pp. 295-332 ◽  
Author(s):  
I. Paul ◽  
G. Papadakis ◽  
J. C. Vassilicos

This paper investigates the dynamics of velocity gradients for a spatially developing flow generated by a single square element of a fractal square grid at low inlet Reynolds number through direct numerical simulation. This square grid-element is also the fundamental block of a classical grid. The flow along the grid-element centreline is initially irrotational and becomes turbulent further downstream due to the lateral excursions of vortical turbulent wakes from the grid-element bars. We study the generation and evolution of the symmetric and anti-symmetric parts of the velocity gradient tensor for this spatially developing flow using the transport equations of mean strain product and mean enstrophy respectively. The choice of low inlet Reynolds number allows for fine spatial resolution and long simulations, both of which are conducive in balancing the budget equations of the above quantities. The budget analysis is carried out along the grid-element centreline and the bar centreline. The former is observed to consist of two subregions: one in the immediate lee of the grid-element which is dominated by irrotational strain, and one further downstream where both strain and vorticity coexist. In the demarcation area between these two subregions, where the turbulence is inhomogeneous and developing, the energy spectrum exhibits the best$-5/3$power-law slope. This is the same location where the experiments at much higher inlet Reynolds number show a well-defined$-5/3$spectrum over more than a decade of frequencies. Yet, the$Q{-}R$diagram, where$Q$and$R$are the second and third invariants of the velocity gradient tensor, remains undeveloped in the near-grid-element region, and both the intermediate and extensive strain-rate eigenvectors align with the vorticity vector. Along the grid-element centreline, the strain is the first velocity gradient quantity generated by the action of pressure Hessian. This strain is then transported downstream by fluctuations and strain self-amplification is activated a little later. Further downstream, vorticity from the bar wakes is brought towards the grid-element centreline, and, through the interaction with strain, leads to the production of enstrophy. The strain-rate tensor has a statistically axial stretching form in the production region, but a statistically biaxial stretching form in the decay region. The usual signatures of velocity gradients such as the shape of$Q{-}R$diagrams and the alignment of vorticity vector with the intermediate eigenvector are detected only in the decay region even though the local Reynolds number (based on the Taylor length scale) is only between 30 and 40.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Radouan Boukharfane ◽  
Aimad Er-raiy ◽  
Matteo Parsani ◽  
Nilanjan Chakraborty

AbstractImproving our fundamental understanding of multiphase turbulent flows will be beneficial for analyses of a wide range of industrial and geophysical processes. Herein, we investigate the topology of the local flow in vaporizing forced homogeneous isotropic turbulent two-phase flows. The invariants of the velocity-gradient, rate-of-strain, rate-of-rotation tensors, and scalar gradient were computed and conditioned for different distances from the liquid–gas surface. A Schur decomposition of the velocity gradient tensor into a normal and non-normal parts was undertaken to supplement the classical double decomposition into rotation and strain tensors. Using direct numerical simulations results, we show that the joint probability density functions of the second and third invariants have classical shapes in all carrier-gas regions but gradually change as they approach the carrier-liquid interface. Near the carrier-liquid interface, the distributions of the invariants are remarkably similar to those found in the viscous sublayer of turbulent wall-bounded flows. Furthermore, the alignment of both vorticity and scalar gradient with the strain-rate field changes spatially such that its universal behaviour occurs far from the liquid–gas interface. We found also that the non-normal effects of the velocity gradient tensor play a crucial role in explaining the preferred alignment.


Sign in / Sign up

Export Citation Format

Share Document