scholarly journals On the receptivity of aerofoil tonal noise: an adjoint analysis

2017 ◽  
Vol 812 ◽  
pp. 771-791 ◽  
Author(s):  
Miguel Fosas de Pando ◽  
Peter J. Schmid ◽  
Denis Sipp

For moderate-to-high Reynolds numbers, aerofoils are known to produce substantial levels of acoustic radiation, known as tonal noise, which arises from a complex interplay between laminar boundary-layer instabilities, trailing-edge acoustic scattering and upstream receptivity of the boundary layers on both aerofoil surfaces. The resulting acoustic spectrum is commonly characterised by distinct equally spaced peaks encompassing the frequency range of convectively amplified instability waves in the pressure-surface boundary layer. In this work, we assess the receptivity and sensitivity of the flow by means of global stability theory and adjoint methods which are discussed in light of the spatial structure of the adjoint global modes, as well as the wavemaker region. It is found that for the frequency range corresponding to acoustic tones the direct global modes capture the growth of instability waves on the suction surface and the near wake together with acoustic radiation into the far field. Conversely, it is shown that the corresponding adjoint global modes, which capture the most receptive region in the flow to external perturbations, have compact spatial support in the pressure surface boundary layer, upstream of the separated flow region. Furthermore, we find that the relative spatial amplitude of the adjoint modes is higher for those modes whose real frequencies correspond to the acoustic peaks. Finally, analysis of the wavemaker region points at the pressure surface near 30 % of the chord as the preferred zone for the placement of actuators for flow control of tonal noise.

1999 ◽  
Vol 382 ◽  
pp. 27-61 ◽  
Author(s):  
EMMA C. NASH ◽  
MARTIN V. LOWSON ◽  
ALAN McALPINE

An experimental and theoretical investigation has been carried out to understand the tonal noise generation mechanism on aerofoils at moderate Reynolds number. Experiments were conducted on a NACA0012 aerofoil section in a low-turbulence closed working section wind tunnel. Narrow band acoustic tones were observed up to 40 dB above background noise. The ladder structure of these tones was eliminated by modifying the tunnel to approximate to anechoic conditions. High-resolution flow velocity measurements have been made with a three-component laser-Doppler anemometer (LDA) which have revealed the presence of strongly amplified boundary-layer instabilities in a region of separated shear flow just upstream of the pressure surface trailing edge, which match the frequency of the acoustic tones. Flow visualization experiments have shown these instabilities to roll up to form a regular Kármán-type vortex street.A new mechanism for tonal noise generation has been proposed, based on the growth of Tollmien–Schlichting (T–S) instability waves strongly amplified by inflectional profiles in the separating laminar shear layer on the pressure surface of the aerofoil. The growth of fixed frequency, spatially growing boundary-layer instability waves propagating over the aerofoil pressure surface has been calculated using experimentally obtained boundary-layer characteristics. The effect of boundary-layer separation has been incorporated into the model. Frequency selection and prediction of T–S waves are in remarkably good agreement with experimental data.


Author(s):  
Christian T. Wakelam ◽  
Reinhard Niehuis ◽  
Martin Hoeger

As part of the current research, three LPT geometries — which were designed with a common pitch, axial chord, inlet angle, and exit Mach number and to create the same nominal level of turning — are compared. Each of the LPT cascades was investigated under a range of Reynolds numbers, exit Mach numbers, and under the influence of a moving bar wake generator. Profile static pressure distributions, wake traverses at 5% and 40% axial chord downstream of the trailing edge and suction side boundary layer traverses were used to compare the performance of the three designs. The total pressure losses are strongly dependant on both the maximum velocity location as well as the diffusion on the suction surface. The importance of the behavior of the pressure surface boundary layer turned out to be negligible in comparison. Cases with equivalent operating Reynolds number and suction side diffusion level are compared in terms of the total pressure losses that are generated. It is shown that a relationship between loss and suction side maximum velocity location exists. An optimum suction side maximum velocity location depends on the Reynolds number, diffusion factor, and wake passing frequency.


Author(s):  
Yagya Dutta Dwivedi ◽  
Vasishta Bhargava Nukala ◽  
Satya Prasad Maddula ◽  
Kiran Nair

Abstract Atmospheric turbulence is an unsteady phenomenon found in nature and plays significance role in predicting natural events and life prediction of structures. In this work, turbulence in surface boundary layer has been studied through empirical methods. Computer simulation of Von Karman, Kaimal methods were evaluated for different surface roughness and for low (1%), medium (10%) and high (50%) turbulence intensities. Instantaneous values of one minute time series for longitudinal turbulent wind at mean wind speed of 12 m/s using both spectra showed strong correlation in validation trends. Influence of integral length scales on turbulence kinetic energy production at different heights is illustrated. Time series for mean wind speed of 12 m/s with surface roughness value of 0.05 m have shown that variance for longitudinal, lateral and vertical velocity components were different and found to be anisotropic. Wind speed power spectral density from Davenport and Simiu profiles have also been calculated at surface roughness of 0.05 m and compared with k−1 and k−3 slopes for Kolmogorov k−5/3 law in inertial sub-range and k−7 in viscous dissipation range. At high frequencies, logarithmic slope of Kolmogorov −5/3rd law agreed well with Davenport, Harris, Simiu and Solari spectra than at low frequencies.


2012 ◽  
Vol 39 (18) ◽  
Author(s):  
Stephen E. Belcher ◽  
Alan L. M. Grant ◽  
Kirsty E. Hanley ◽  
Baylor Fox-Kemper ◽  
Luke Van Roekel ◽  
...  

2021 ◽  
Author(s):  
Gregory Wagner ◽  
Andre Souza ◽  
Adeline Hillier ◽  
Ali Ramadhan ◽  
Raffaele Ferrari

<p>Parameterizations of turbulent mixing in the ocean surface boundary layer (OSBL) are key Earth System Model (ESM) components that modulate the communication of heat and carbon between the atmosphere and ocean interior. OSBL turbulence parameterizations are formulated in terms of unknown free parameters estimated from observational or synthetic data. In this work we describe the development and use of a synthetic dataset called the “LESbrary” generated by a large number of idealized, high-fidelity, limited-area large eddy simulations (LES) of OSBL turbulent mixing. We describe how the LESbrary design leverages a detailed understanding of OSBL conditions derived from observations and large scale models to span the range of realistically diverse physical scenarios. The result is a diverse library of well-characterized “synthetic observations” that can be readily assimilated for the calibration of realistic OSBL parameterizations in isolation from other ESM model components. We apply LESbrary data to calibrate free parameters, develop prior estimates of parameter uncertainty, and evaluate model errors in two OSBL parameterizations for use in predictive ESMs.</p>


Sign in / Sign up

Export Citation Format

Share Document